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Preface

This book is about conver optimization, a special class of mathematical optimiza-
tion problems, which includes least-squares and linear programming problems. It
is well known that least-squares and linear programming problems have a fairly
complete theory, arise in a variety of applications, and can be solved numerically
very efficiently. The basic point of this book is that the same can be said for the
larger class of convex optimization problems.

While the mathematics of convex optimization has been studied for about a
century, several related recent developments have stimulated new interest in the
topic. The first is the recognition that interior-point methods, developed in the
1980s to solve linear programming problems, can be used to solve convex optimiza-
tion problems as well. These new methods allow us to solve certain new classes
of convex optimization problems, such as semidefinite programs and second-order
cone programs, almost as easily as linear programs.

The second development is the discovery that convex optimization problems
(beyond least-squares and linear programs) are more prevalent in practice than
was previously thought. Since 1990 many applications have been discovered in
areas such as automatic control systems, estimation and signal processing, com-
munications and networks, electronic circuit design, data analysis and modeling,
statistics, and finance. Convex optimization has also found wide application in com-
binatorial optimization and global optimization, where it is used to find bounds on
the optimal value, as well as approximate solutions. We believe that many other
applications of convex optimization are still waiting to be discovered.

There are great advantages to recognizing or formulating a problem as a convex
optimization problem. The most basic advantage is that the problem can then be
solved, very reliably and efficiently, using interior-point methods or other special
methods for convex optimization. These solution methods are reliable enough to be
embedded in a computer-aided design or analysis tool, or even a real-time reactive
or automatic control system. There are also theoretical or conceptual advantages
of formulating a problem as a convex optimization problem. The associated dual
problem, for example, often has an interesting interpretation in terms of the original
problem, and sometimes leads to an efficient or distributed method for solving it.

We think that convex optimization is an important enough topic that everyone
who uses computational mathematics should know at least a little bit about it.
In our opinion, convex optimization is a natural next topic after advanced linear
algebra (topics like least-squares, singular values), and linear programming.
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Goal of this book

For many general purpose optimization methods, the typical approach is to just
try out the method on the problem to be solved. The full benefits of convex
optimization, in contrast, only come when the problem is known ahead of time to
be convex. Of course, many optimization problems are not convex, and it can be
difficult to recognize the ones that are, or to reformulate a problem so that it is
convex.

Our main goal is to help the reader develop a working knowledge of
convex optimization, i.e., to develop the skills and background needed
to recognize, formulate, and solve convexr optimization problems.

Developing a working knowledge of convex optimization can be mathematically
demanding, especially for the reader interested primarily in applications. In our
experience (mostly with graduate students in electrical engineering and computer
science), the investment often pays off well, and sometimes very well.

There are several books on linear programming, and general nonlinear pro-
gramming, that focus on problem formulation, modeling, and applications. Several
other books cover the theory of convex optimization, or interior-point methods and
their complexity analysis. This book is meant to be something in between, a book
on general convex optimization that focuses on problem formulation and modeling.

We should also mention what this book is not. It is not a text primarily about
convex analysis, or the mathematics of convex optimization; several existing texts
cover these topics well. Nor is the book a survey of algorithms for convex optimiza-
tion. Instead we have chosen just a few good algorithms, and describe only simple,
stylized versions of them (which, however, do work well in practice). We make no
attempt to cover the most recent state of the art in interior-point (or other) meth-
ods for solving convex problems. Our coverage of numerical implementation issues
is also highly simplified, but we feel that it is adequate for the potential user to
develop working implementations, and we do cover, in some detail, techniques for
exploiting structure to improve the efficiency of the methods. We also do not cover,
in more than a simplified way, the complexity theory of the algorithms we describe.
We do, however, give an introduction to the important ideas of self-concordance
and complexity analysis for interior-point methods.

Audience

This book is meant for the researcher, scientist, or engineer who uses mathemat-
ical optimization, or more generally, computational mathematics. This includes,
naturally, those working directly in optimization and operations research, and also
many others who use optimization, in fields like computer science, economics, fi-
nance, statistics, data mining, and many fields of science and engineering. Our
primary focus is on the latter group, the potential users of convex optimization,
and not the (less numerous) experts in the field of convex optimization.

The only background required of the reader is a good knowledge of advanced
calculus and linear algebra. If the reader has seen basic mathematical analysis (e.g.,
norms, convergence, elementary topology), and basic probability theory, he or she
should be able to follow every argument and discussion in the book. We hope that
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readers who have not seen analysis and probability, however, can still get all of the
essential ideas and important points. Prior exposure to numerical computing or
optimization is not needed, since we develop all of the needed material from these
areas in the text or appendices.

Using this book in courses

We hope that this book will be useful as the primary or alternate textbook for
several types of courses. Since 1995 we have been using drafts of this book for
graduate courses on linear, nonlinear, and convex optimization (with engineering
applications) at Stanford and UCLA. We are able to cover most of the material,
though not in detail, in a one quarter graduate course. A one semester course allows
for a more leisurely pace, more applications, more detailed treatment of theory,
and perhaps a short student project. A two quarter sequence allows an expanded
treatment of the more basic topics such as linear and quadratic programming (which
are very useful for the applications oriented student), or a more substantial student
project.

This book can also be used as a reference or alternate text for a more traditional
course on linear and nonlinear optimization, or a course on control systems (or
other applications area), that includes some coverage of convex optimization. As
the secondary text in a more theoretically oriented course on convex optimization,
it can be used as a source of simple practical examples.
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Chapter 1

Introduction

In this introduction we give an overview of mathematical optimization, focusing on
the special role of convex optimization. The concepts introduced informally here
will be covered in later chapters, with more care and technical detail.

Mathematical optimization

A mathematical optimization problem, or just optimization problem, has the form

minimize  fo(z)

subject to  fi(z) <b;, i=1,...,m. (1.1)

Here the vector = (21,...,x,) is the optimization variable of the problem, the
function fy : R" — R is the objective function, the functions f; : R" — R,
i=1,...,m, are the (inequality) constraint functions, and the constants by, ..., by,
are the limits, or bounds, for the constraints. A vector x* is called optimal, or a
solution of the problem (1.1), if it has the smallest objective value among all vectors
that satisfy the constraints: for any z with fi1(z) < by,..., fm(2) < by, we have
fo(z) = fo(z*).

We generally consider families or classes of optimization problems, characterized
by particular forms of the objective and constraint functions. As an important
example, the optimization problem (1.1) is called a linear program if the objective
and constraint functions fy, ..., f;, are linear, i.e., satisfy

filax + By) = afi(z) + Bfi(y) (1.2)

for all z, y € R"™ and all o, 8 € R. If the optimization problem is not linear, it is
called a nonlinear program.

This book is about a class of optimization problems called convezr optimiza-
tion problems. A convex optimization problem is one in which the objective and
constraint functions are convex, which means they satisfy the inequality

filoax + By) < afi(x) + Bfi(y) (1.3)
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forallz, ye R"and all o, f € Rwitha+8=1,a >0, 8> 0. Comparing (1.3)
and (1.2), we see that convexity is more general than linearity: inequality replaces
the more restrictive equality, and the inequality must hold only for certain values
of a and . Since any linear program is therefore a convex optimization problem,
we can consider convex optimization to be a generalization of linear programming.

Applications

The optimization problem (1.1) is an abstraction of the problem of making the best
possible choice of a vector in R" from a set of candidate choices. The variable x
represents the choice made; the constraints f;(z) < b; represent firm requirements
or specifications that limit the possible choices, and the objective value fo(z) rep-
resents the cost of choosing z. (We can also think of — fo(z) as representing the
value, or utility, of choosing =.) A solution of the optimization problem (1.1) corre-
sponds to a choice that has minimum cost (or maximum utility), among all choices
that meet the firm requirements.

In portfolio optimization, for example, we seek the best way to invest some
capital in a set of n assets. The variable x; represents the investment in the ith
asset, so the vector z € R describes the overall portfolio allocation across the set of
assets. The constraints might represent a limit on the budget (i.e., a limit on the
total amount to be invested), the requirement that investments are nonnegative
(assuming short positions are not allowed), and a minimum acceptable value of
expected return for the whole portfolio. The objective or cost function might be
a measure of the overall risk or variance of the portfolio return. In this case,
the optimization problem (1.1) corresponds to choosing a portfolio allocation that
minimizes risk, among all possible allocations that meet the firm requirements.

Another example is device sizing in electronic design, which is the task of choos-
ing the width and length of each device in an electronic circuit. Here the variables
represent the widths and lengths of the devices. The constraints represent a va-
riety of engineering requirements, such as limits on the device sizes imposed by
the manufacturing process, timing requirements that ensure that the circuit can
operate reliably at a specified speed, and a limit on the total area of the circuit. A
common objective in a device sizing problem is the total power consumed by the
circuit. The optimization problem (1.1) is to find the device sizes that satisfy the
design requirements (on manufacturability, timing, and area) and are most power
efficient.

In data fitting, the task is to find a model, from a family of potential models,
that best fits some observed data and prior information. Here the variables are the
parameters in the model, and the constraints can represent prior information or
required limits on the parameters (such as nonnegativity). The objective function
might be a measure of misfit or prediction error between the observed data and
the values predicted by the model, or a statistical measure of the unlikeliness or
implausibility of the parameter values. The optimization problem (1.1) is to find
the model parameter values that are consistent with the prior information, and give
the smallest misfit or prediction error with the observed data (or, in a statistical
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1.1 Mathematical optimization

framework, are most likely).

An amazing variety of practical problems involving decision making (or system
design, analysis, and operation) can be cast in the form of a mathematical opti-
mization problem, or some variation such as a multicriterion optimization problem.
Indeed, mathematical optimization has become an important tool in many areas.
It is widely used in engineering, in electronic design automation, automatic con-
trol systems, and optimal design problems arising in civil, chemical, mechanical,
and aerospace engineering. Optimization is used for problems arising in network
design and operation, finance, supply chain management, scheduling, and many
other areas. The list of applications is still steadily expanding.

For most of these applications, mathematical optimization is used as an aid to
a human decision maker, system designer, or system operator, who supervises the
process, checks the results, and modifies the problem (or the solution approach)
when necessary. This human decision maker also carries out any actions suggested
by the optimization problem, e.g., buying or selling assets to achieve the optimal
portfolio.

A relatively recent phenomenon opens the possibility of many other applications
for mathematical optimization. With the proliferation of computers embedded in
products, we have seen a rapid growth in embedded optimization. In these em-
bedded applications, optimization is used to automatically make real-time choices,
and even carry out the associated actions, with no (or little) human intervention or
oversight. In some application areas, this blending of traditional automatic control
systems and embedded optimization is well under way; in others, it is just start-
ing. Embedded real-time optimization raises some new challenges: in particular,
it requires solution methods that are extremely reliable, and solve problems in a
predictable amount of time (and memory).

Solving optimization problems

A solution method for a class of optimization problems is an algorithm that com-
putes a solution of the problem (to some given accuracy), given a particular problem
from the class, i.e., an instance of the problem. Since the late 1940s, a large effort
has gone into developing algorithms for solving various classes of optimization prob-
lems, analyzing their properties, and developing good software implementations.
The effectiveness of these algorithms, i.e., our ability to solve the optimization prob-
lem (1.1), varies considerably, and depends on factors such as the particular forms
of the objective and constraint functions, how many variables and constraints there
are, and special structure, such as sparsity. (A problem is sparse if each constraint
function depends on only a small number of the variables).

Even when the objective and constraint functions are smooth (for example,
polynomials) the general optimization problem (1.1) is surprisingly difficult to solve.
Approaches to the general problem therefore involve some kind of compromise, such
as very long computation time, or the possibility of not finding the solution. Some
of these methods are discussed in §1.4.

There are, however, some important exceptions to the general rule that most
optimization problems are difficult to solve. For a few problem classes we have
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effective algorithms that can reliably solve even large problems, with hundreds or
thousands of variables and constraints. Two important and well known examples,
described in §1.2 below (and in detail in chapter 4), are least-squares problems and
linear programs. It is less well known that convex optimization is another exception
to the rule: Like least-squares or linear programming, there are very effective
algorithms that can reliably and efficiently solve even large convex problems.

Least-squares and linear programming

In this section we describe two very widely known and used special subclasses of
convex optimization: least-squares and linear programming. (A complete technical
treatment of these problems will be given in chapter 4.)

Least-squares problems

A least-squares problem is an optimization problem with no constraints (i.e., m =
0) and an objective which is a sum of squares of terms of the form a x — b;:

minimize fo(z) = || Az —b|2 = 2F_ (aTx — b;)%. (1.4)

Here A € R¥*" (with k > n), aT are the rows of A, and the vector z € R™ is the
optimization variable.

Solving least-squares problems

The solution of a least-squares problem (1.4) can be reduced to solving a set of
linear equations,

(AT A)z = AT,

so we have the analytical solution z = (AT A)"1ATb. For least-squares problems
we have good algorithms (and software implementations) for solving the problem to
high accuracy, with very high reliability. The least-squares problem can be solved
in a time approximately proportional to n?k, with a known constant. A current
desktop computer can solve a least-squares problem with hundreds of variables, and
thousands of terms, in a few seconds; more powerful computers, of course, can solve
larger problems, or the same size problems, faster. (Moreover, these solution times
will decrease exponentially in the future, according to Moore’s law.) Algorithms
and software for solving least-squares problems are reliable enough for embedded
optimization.

In many cases we can solve even larger least-squares problems, by exploiting
some special structure in the coefficient matrix A. Suppose, for example, that the
matrix A is sparse, which means that it has far fewer than kn nonzero entries. By
exploiting sparsity, we can usually solve the least-squares problem much faster than
order n%k. A current desktop computer can solve a sparse least-squares problem
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with tens of thousands of variables, and hundreds of thousands of terms, in around
a minute (although this depends on the particular sparsity pattern).

For extremely large problems (say, with millions of variables), or for problems
with exacting real-time computing requirements, solving a least-squares problem
can be a challenge. But in the vast majority of cases, we can say that existing
methods are very effective, and extremely reliable. Indeed, we can say that solving
least-squares problems (that are not on the boundary of what is currently achiev-
able) is a (mature) technology, that can be reliably used by many people who do
not know, and do not need to know, the details.

Using least-squares

The least-squares problem is the basis for regression analysis, optimal control, and
many parameter estimation and data fitting methods. It has a number of statistical
interpretations, e.g., as maximum likelihood estimation of a vector z, given linear
measurements corrupted by Gaussian measurement errors.

Recognizing an optimization problem as a least-squares problem is straightfor-
ward; we only need to verify that the objective is a quadratic function (and then
test whether the associated quadratic form is positive semidefinite). While the
basic least-squares problem has a simple fixed form, several standard techniques
are used to increase its flexibility in applications.

In weighted least-squares, the weighted least-squares cost

k
Z wi(af © — b;)?,
i=1

where wy,...,wy are positive, is minimized. (This problem is readily cast and
solved as a standard least-squares problem.) Here the weights w; are chosen to
reflect differing levels of concern about the sizes of the terms alz — b;, or simply
to influence the solution. In a statistical setting, weighted least-squares arises
in estimation of a vector x, given linear measurements corrupted by errors with
unequal variances.

Another technique in least-squares is regularization, in which extra terms are
added to the cost function. In the simplest case, a positive multiple of the sum of
squares of the variables is added to the cost function:

k

Z(a?w — b))+ pix?,
i=1

=1

where p > 0. (This problem too can be formulated as a standard least-squares
problem.) The extra terms penalize large values of z, and result in a sensible
solution in cases when minimizing the first sum only does not. The parameter p is
chosen by the user to give the right trade-off between making the original objective
function Zle(a?x —b;)? small, while keeping >""_; 27 not too big. Regularization
comes up in statistical estimation when the vector = to be estimated is given a prior
distribution.

Weighted least-squares and regularization are covered in chapter 6; their sta-
tistical interpretations are given in chapter 7.
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Linear programming

Another important class of optimization problems is linear programming, in which
the objective and all constraint functions are linear:

T

minimize c¢'x (1.5)
subject to a;fra: <b;, i=1,...,m. ’
Here the vectors c,aq,...,a, € R" and scalars by,...,b,, € R are problem pa-

rameters that specify the objective and constraint functions.

Solving linear programs

There is no simple analytical formula for the solution of a linear program (as there
is for a least-squares problem), but there are a variety of very effective methods for
solving them, including Dantzig’s simplex method, and the more recent interior-
point methods described later in this book. While we cannot give the exact number
of arithmetic operations required to solve a linear program (as we can for least-
squares), we can establish rigorous bounds on the number of operations required
to solve a linear program, to a given accuracy, using an interior-point method. The
complexity in practice is order n?m (assuming m > n) but with a constant that is
less well characterized than for least-squares. These algorithms are quite reliable,
although perhaps not quite as reliable as methods for least-squares. We can easily
solve problems with hundreds of variables and thousands of constraints on a small
desktop computer, in a matter of seconds. If the problem is sparse, or has some
other exploitable structure, we can often solve problems with tens or hundreds of
thousands of variables and constraints.

As with least-squares problems, it is still a challenge to solve extremely large
linear programs, or to solve linear programs with exacting real-time computing re-
quirements. But, like least-squares, we can say that solving (most) linear programs
is a mature technology. Linear programming solvers can be (and are) embedded in
many tools and applications.

Using linear programming

Some applications lead directly to linear programs in the form (1.5), or one of
several other standard forms. In many other cases the original optimization prob-
lem does not have a standard linear program form, but can be transformed to an
equivalent linear program (and then, of course, solved) using techniques covered in
detail in chapter 4.

As a simple example, consider the Chebyshev approximation problem:

minimize max;—1__x |alz — b;|. (1.6)

Here x € R" is the variable, and a1,...,ar € R", b1,...,br € R are parameters
that specify the problem instance. Note the resemblance to the least-squares prob-
lem (1.4). For both problems, the objective is a measure of the size of the terms
alz — b;. In least-squares, we use the sum of squares of the terms as objective,

whereas in Chebyshev approximation, we use the maximum of the absolute values.
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One other important distinction is that the objective function in the Chebyshev
approximation problem (1.6) is not differentiable; the objective in the least-squares
problem (1.4) is quadratic, and therefore differentiable.
The Chebyshev approximation problem (1.6) can be solved by solving the linear

program

minimize ¢

subject to alx —t<b;, i=1,....k (1.7)
—ale—t< b, i=1,...,k,

7

with variables z € R™ and ¢ € R. (The details will be given in chapter 6.)
Since linear programs are readily solved, the Chebyshev approximation problem is
therefore readily solved.

Anyone with a working knowledge of linear programming would recognize the
Chebyshev approximation problem (1.6) as one that can be reduced to a linear
program. For those without this background, though, it might not be obvious that
the Chebyshev approximation problem (1.6), with its nondifferentiable objective,
can be formulated and solved as a linear program.

While recognizing problems that can be reduced to linear programs is more
involved than recognizing a least-squares problem, it is a skill that is readily ac-
quired, since only a few standard tricks are used. The task can even be partially
automated; some software systems for specifying and solving optimization prob-
lems can automatically recognize (some) problems that can be reformulated as
linear programs.

Convex optimization

A convex optimization problem is one of the form

minimize  fo(z)

subject to  fi(z) <b;, i=1,...,m, (1.8)

where the functions fy,..., fi, : R" — R are convex, i.e., satisfy

filoax + By) < afi(x) + Bfi(y)

forallz, ye R" and all , § € Rwitha+8=1,a >0, 8 > 0. The least-squares
problem (1.4) and linear programming problem (1.5) are both special cases of the
general convex optimization problem (1.8).

Solving convex optimization problems

There is in general no analytical formula for the solution of convex optimization
problems, but (as with linear programming problems) there are very effective meth-
ods for solving them. Interior-point methods work very well in practice, and in some
cases can be proved to solve the problem to a specified accuracy with a number of
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operations that does not exceed a polynomial of the problem dimensions. (This is
covered in chapter 11.)

We will see that interior-point methods can solve the problem (1.8) in a num-
ber of steps or iterations that is almost always in the range between 10 and 100.
Ignoring any structure in the problem (such as sparsity), each step requires on the
order of

max{n®,n?m, F}

operations, where F' is the cost of evaluating the first and second derivatives of the
objective and constraint functions fo, ..., fim-

Like methods for solving linear programs, these interior-point methods are quite
reliable. We can easily solve problems with hundreds of variables and thousands
of constraints on a current desktop computer, in at most a few tens of seconds. By
exploiting problem structure (such as sparsity), we can solve far larger problems,
with many thousands of variables and constraints.

We cannot yet claim that solving general convex optimization problems is a
mature technology, like solving least-squares or linear programming problems. Re-
search on interior-point methods for general nonlinear convex optimization is still
a very active research area, and no consensus has emerged yet as to what the best
method or methods are. But it is reasonable to expect that solving general con-
vex optimization problems will become a technology within a few years. And for
some subclasses of convex optimization problems, for example second-order cone
programming or geometric programming (studied in detail in chapter 4), it is fair
to say that interior-point methods are approaching a technology.

Using convex optimization

Using convex optimization is, at least conceptually, very much like using least-
squares or linear programming. If we can formulate a problem as a convex opti-
mization problem, then we can solve it efficiently, just as we can solve a least-squares
problem efficiently. With only a bit of exaggeration, we can say that, if you formu-
late a practical problem as a convex optimization problem, then you have solved
the original problem.

There are also some important differences. Recognizing a least-squares problem
is straightforward, but recognizing a convex function can be difficult. In addition,
there are many more tricks for transforming convex problems than for transforming
linear programs. Recognizing convex optimization problems, or those that can
be transformed to convex optimization problems, can therefore be challenging.
The main goal of this book is to give the reader the background needed to do
this. Once the skill of recognizing or formulating convex optimization problems is
developed, you will find that surprisingly many problems can be solved via convex
optimization.

The challenge, and art, in using convex optimization is in recognizing and for-
mulating the problem. Once this formulation is done, solving the problem is, like
least-squares or linear programming, (almost) technology.
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Nonlinear optimization

Nonlinear optimization (or nonlinear programming) is the term used to describe
an optimization problem when the objective or constraint functions are not linear,
but not known to be convex. Sadly, there are no effective methods for solving
the general nonlinear programming problem (1.1). Even simple looking problems
with as few as ten variables can be extremely challenging, while problems with a
few hundreds of variables can be intractable. Methods for the general nonlinear
programming problem therefore take several different approaches, each of which
involves some compromise.

Local optimization

In local optimization, the compromise is to give up seeking the optimal x, which
minimizes the objective over all feasible points. Instead we seek a point that is
only locally optimal, which means that it minimizes the objective function among
feasible points that are near it, but is not guaranteed to have a lower objective
value than all other feasible points. A large fraction of the research on general
nonlinear programming has focused on methods for local optimization, which as a
consequence are well developed.

Local optimization methods can be fast, can handle large-scale problems, and
are widely applicable, since they only require differentiability of the objective and
constraint functions. As a result, local optimization methods are widely used in
applications where there is value in finding a good point, if not the very best. In
an engineering design application, for example, local optimization can be used to
improve the performance of a design originally obtained by manual, or other, design
methods.

There are several disadvantages of local optimization methods, beyond (possi-
bly) not finding the true, globally optimal solution. The methods require an initial
guess for the optimization variable. This initial guess or starting point is critical,
and can greatly affect the objective value of the local solution obtained. Little
information is provided about how far from (globally) optimal the local solution
is. Local optimization methods are often sensitive to algorithm parameter values,
which may need to be adjusted for a particular problem, or family of problems.

Using a local optimization method is trickier than solving a least-squares prob-
lem, linear program, or convex optimization problem. It involves experimenting
with the choice of algorithm, adjusting algorithm parameters, and finding a good
enough initial guess (when one instance is to be solved) or a method for producing
a good enough initial guess (when a family of problems is to be solved). Roughly
speaking, local optimization methods are more art than technology. Local opti-
mization is a well developed art, and often very effective, but it is nevertheless an
art. In contrast, there is little art involved in solving a least-squares problem or
a linear program (except, of course, those on the boundary of what is currently
possible).

An interesting comparison can be made between local optimization methods for
nonlinear programming, and convex optimization. Since differentiability of the ob-
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jective and constraint functions is the only requirement for most local optimization
methods, formulating a practical problem as a nonlinear optimization problem is
relatively straightforward. The art in local optimization is in solving the problem
(in the weakened sense of finding a locally optimal point), once it is formulated.
In convex optimization these are reversed: The art and challenge is in problem
formulation; once a problem is formulated as a convex optimization problem, it is
relatively straightforward to solve it.

Global optimization

In global optimization, the true global solution of the optimization problem (1.1)
is found; the compromise is efficiency. The worst-case complexity of global opti-
mization methods grows exponentially with the problem sizes n and m; the hope
is that in practice, for the particular problem instances encountered, the method is
far faster. While this favorable situation does occur, it is not typical. Even small
problems, with a few tens of variables, can take a very long time (e.g., hours or
days) to solve.

Global optimization is used for problems with a small number of variables, where
computing time is not critical, and the value of finding the true global solution is
very high. One example from engineering design is worst-case analysis or verifica-
tion of a high value or safety-critical system. Here the variables represent uncertain
parameters, that can vary during manufacturing, or with the environment or op-
erating condition. The objective function is a utility function, i.e., one for which
smaller values are worse than larger values, and the constraints represent prior
knowledge about the possible parameter values. The optimization problem (1.1) is
the problem of finding the worst-case values of the parameters. If the worst-case
value is acceptable, we can certify the system as safe or reliable (with respect to
the parameter variations).

A local optimization method can rapidly find a set of parameter values that
is bad, but not guaranteed to be the absolute worst possible. If a local optimiza-
tion method finds parameter values that yield unacceptable performance, it has
succeeded in determining that the system is not reliable. But a local optimization
method cannot certify the system as reliable; it can only fail to find bad parameter
values. A global optimization method, in contrast, will find the absolute worst val-
ues of the parameters, and if the associated performance is acceptable, can certify
the system as safe. The cost is computation time, which can be very large, even
for a relatively small number of parameters. But it may be worth it in cases where
the value of certifying the performance is high, or the cost of being wrong about
the reliability or safety is high.

Role of convex optimization in nonconvex problems
In this book we focus primarily on convex optimization problems, and applications

that can be reduced to convex optimization problems. But convex optimization
also plays an important role in problems that are not convex.
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Initialization for local optimization

One obvious use is to combine convex optimization with a local optimization
method. Starting with a nonconvex problem, we first find an approximate, but
convex, formulation of the problem. By solving this approximate problem, which
can be done easily and without an initial guess, we obtain the exact solution to the
approximate convex problem. This point is then used as the starting point for a
local optimization method, applied to the original nonconvex problem.

Convex heuristics for nonconvex optimization

Convex optimization is the basis for several heuristics for solving nonconvex prob-
lems. One interesting example we will see is the problem of finding a sparse vector
x (i.e., one with few nonzero entries) that satisfies some constraints. While this is
a difficult combinatorial problem, there are some simple heuristics, based on con-
vex optimization, that often find fairly sparse solutions. (These are described in
chapter 6.)

Another broad example is given by randomized algorithms, in which an ap-
proximate solution to a nonconvex problem is found by drawing some number of
candidates from a probability distribution, and taking the best one found as the
approximate solution. Now suppose the family of distributions from which we will
draw the candidates is parametrized, e.g., by its mean and covariance. We can then
pose the question, which of these distributions gives us the smallest expected value
of the objective? It turns out that this problem is sometimes a convex problem,
and therefore efficiently solved. (See, e.g., exercise 11.23.)

Bounds for global optimization

Many methods for global optimization require a cheaply computable lower bound
on the optimal value of the nonconvex problem. Two standard methods for doing
this are based on convex optimization. In relazation, each nonconvex constraint
is replaced with a looser, but convex, constraint. In Lagrangian relaxation, the
Lagrangian dual problem (described in chapter 5) is solved. This problem is convex,
and provides a lower bound on the optimal value of the nonconvex problem.

Outline

The book is divided into three main parts, titled Theory, Applications, and Algo-
rithms.

Part I: Theory

In part I, Theory, we cover basic definitions, concepts, and results from convex
analysis and convex optimization. We make no attempt to be encyclopedic, and
skew our selection of topics toward those that we think are useful in recognizing
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and formulating convex optimization problems. This is classical material, almost
all of which can be found in other texts on convex analysis and optimization. We
make no attempt to give the most general form of the results; for that the reader
can refer to any of the standard texts on convex analysis.

Chapters 2 and 3 cover convex sets and convex functions, respectively. We
give some common examples of convex sets and functions, as well as a number of
convex calculus rules, i.e., operations on sets and functions that preserve convexity.
Combining the basic examples with the convex calculus rules allows us to form
(or perhaps more importantly, recognize) some fairly complicated convex sets and
functions.

In chapter 4, Convex optimization problems, we give a careful treatment of op-
timization problems, and describe a number of transformations that can be used to
reformulate problems. We also introduce some common subclasses of convex opti-
mization, such as linear programming and geometric programming, and the more
recently developed second-order cone programming and semidefinite programming.

Chapter 5 covers Lagrangian duality, which plays a central role in convex opti-
mization. Here we give the classical Karush-Kuhn-Tucker conditions for optimality,
and a local and global sensitivity analysis for convex optimization problems.

Part Il: Applications

In part II, Applications, we describe a variety of applications of convex optimization,
in areas like probability and statistics, computational geometry, and data fitting.
We have described these applications in a way that is accessible, we hope, to a broad
audience. To keep each application short, we consider only simple cases, sometimes
adding comments about possible extensions. We are sure that our treatment of
some of the applications will cause experts to cringe, and we apologize to them
in advance. But our goal is to convey the flavor of the application, quickly and
to a broad audience, and not to give an elegant, theoretically sound, or complete
treatment. Our own backgrounds are in electrical engineering, in areas like control
systems, signal processing, and circuit analysis and design. Although we include
these topics in the courses we teach (using this book as the main text), only a few
of these applications are broadly enough accessible to be included here.

The aim of part II is to show the reader, by example, how convex optimization
can be applied in practice.

Part Ill: Algorithms

In part III, Algorithms, we describe numerical methods for solving convex opti-
mization problems, focusing on Newton’s algorithm and interior-point methods.
Part III is organized as three chapters, which cover unconstrained optimization,
equality constrained optimization, and inequality constrained optimization, respec-
tively. These chapters follow a natural hierarchy, in which solving a problem is
reduced to solving a sequence of simpler problems. Quadratic optimization prob-
lems (including, e.g., least-squares) form the base of the hierarchy; they can be
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solved exactly by solving a set of linear equations. Newton’s method, developed in
chapters 9 and 10, is the next level in the hierarchy. In Newton’s method, solving
an unconstrained or equality constrained problem is reduced to solving a sequence
of quadratic problems. In chapter 11, we describe interior-point methods, which
form the top level of the hierarchy. These methods solve an inequality constrained
problem by solving a sequence of unconstrained, or equality constrained, problems.

Overall we cover just a handful of algorithms, and omit entire classes of good
methods, such as quasi-Newton, conjugate-gradient, bundle, and cutting-plane al-
gorithms. For the methods we do describe, we give simplified variants, and not the
latest, most sophisticated versions. Our choice of algorithms was guided by several
criteria. We chose algorithms that are simple (to describe and implement), but
also reliable and robust, and effective and fast enough for most problems.

Many users of convex optimization end up using (but not developing) standard
software, such as a linear or semidefinite programming solver. For these users, the
material in part III is meant to convey the basic flavor of the methods, and give
some ideas of their basic attributes. For those few who will end up developing new
algorithms, we think that part III serves as a good introduction.

Appendices

There are three appendices. The first lists some basic facts from mathematics that
we use, and serves the secondary purpose of setting out our notation. The second
appendix covers a fairly particular topic, optimization problems with quadratic
objective and one quadratic constraint. These are nonconvex problems that never-
theless can be effectively solved, and we use the results in several of the applications
described in part II.

The final appendix gives a brief introduction to numerical linear algebra, con-
centrating on methods that can exploit problem structure, such as sparsity, to gain
efficiency. We do not cover a number of important topics, including roundoff analy-
sis, or give any details of the methods used to carry out the required factorizations.
These topics are covered by a number of excellent texts.

Comments on examples

In many places in the text (but particularly in parts II and III, which cover ap-
plications and algorithms, respectively) we illustrate ideas using specific examples.
In some cases, the examples are chosen (or designed) specifically to illustrate our
point; in other cases, the examples are chosen to be ‘typical’. This means that the
examples were chosen as samples from some obvious or simple probability distri-
bution. The dangers of drawing conclusions about algorithm performance from a
few tens or hundreds of randomly generated examples are well known, so we will
not repeat them here. These examples are meant only to give a rough idea of al-
gorithm performance, or a rough idea of how the computational effort varies with
problem dimensions, and not as accurate predictors of algorithm performance. In
particular, your results may vary from ours.
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Comments on exercises

Each chapter concludes with a set of exercises. Some involve working out the de-
tails of an argument or claim made in the text. Others focus on determining, or
establishing, convexity of some given sets, functions, or problems; or more gener-
ally, convex optimization problem formulation. Some chapters include numerical
exercises, which require some (but not much) programming in an appropriate high
level language. The difficulty level of the exercises is mixed, and varies without
warning from quite straightforward to rather tricky.

Notation

Our notation is more or less standard, with a few exceptions. In this section we
describe our basic notation; a more complete list appears on page 697.

We use R to denote the set of real numbers, R to denote the set of nonnegative
real numbers, and R, to denote the set of positive real numbers. The set of real
n-vectors is denoted R", and the set of real m x n matrices is denoted R™*". We
delimit vectors and matrices with square brackets, with the components separated
by space. We use parentheses to construct column vectors from comma separated
lists. For example, if a, b, ¢ € R, we have

a
(a,b,e)=| b |=[a b c]T,
c

which is an element of R®. The symbol 1 denotes a vector all of whose components
are one (with dimension determined from context). The notation x; can refer to
the ith component of the vector z, or to the ith element of a set or sequence of
vectors x1,T9,.... The context, or the text, makes it clear which is meant.

We use S* to denote the set of symmetric k X k matrices, Si to denote the
set of symmetric positive semidefinite k& x k& matrices, and S’i ., to denote the set
of symmetric positive definite k x k matrices. The curled inequality symbol >
(and its strict form >) is used to denote generalized inequality: between vectors,
it represents componentwise inequality; between symmetric matrices, it represents
matrix inequality. With a subscript, the symbol <k (or <) denotes generalized
inequality with respect to the cone K (explained in §2.4.1).

Our notation for describing functions deviates a bit from standard notation,
but we hope it will cause no confusion. We use the notation f : R? — R? to mean
that f is an R%valued function on some subset of RP, specifically, its domain,
which we denote dom f. We can think of our use of the notation f : R? — R as
a declaration of the function type, as in a computer language: f : R’ — R? means
that the function f takes as argument a real p-vector, and returns a real g-vector.
The set dom f, the domain of the function f, specifies the subset of R? of points
x for which f(z) is defined. As an example, we describe the logarithm function
as log : R — R, with domlog = R, . The notation log : R — R means that
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the logarithm function accepts and returns a real number; domlog = R, means
that the logarithm is defined only for positive numbers.

We use R" as a generic finite-dimensional vector space. We will encounter
several other finite-dimensional vector spaces, e.g., the space of polynomials of a
variable with a given maximum degree, or the space S* of symmetric k X k matrices.
By identifying a basis for a vector space, we can always identify it with R™ (where
n is its dimension), and therefore the generic results, stated for the vector space
R", can be applied. We usually leave it to the reader to translate general results
or statements to other vector spaces. For example, any linear function f : R"” - R
can be represented in the form f(z) = ¢’x, where ¢ € R". The corresponding
statement for the vector space S* can be found by choosing a basis and translating.
This results in the statement: any linear function f : S* 5 R can be represented
in the form f(X) = tr(CX), where C € S*.
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Chapter 2

Convex sets

Affine and convex sets

Lines and line segments

Suppose z1 # x2 are two points in R". Points of the form
y="0x1+ (1 —0)xs,

where 6§ € R, form the line passing through x; and x5. The parameter value § = 0
corresponds to y = x3, and the parameter value § = 1 corresponds to y = z7.
Values of the parameter ¢ between 0 and 1 correspond to the (closed) line segment
between x; and xs.

Expressing y in the form

y=2z9+0(z1 — x2)

gives another interpretation: y is the sum of the base point x5 (corresponding
to 6 = 0) and the direction x1 — xo (which points from zo to z1) scaled by the
parameter 6. Thus, 6 gives the fraction of the way from zs to xz; where y lies. As
0 increases from 0 to 1, the point y moves from x5 to z1; for # > 1, the point y lies
on the line beyond z;. This is illustrated in figure 2.1.

Affine sets

A set C C R" is affine if the line through any two distinct points in C' lies in C,
i.e., if for any 1, xo € C and 6 € R, we have 0z1 + (1 —6)z2 € C. In other words,
C contains the linear combination of any two points in C, provided the coefficients
in the linear combination sum to one.

This idea can be generalized to more than two points. We refer to a point
of the form 6;x1 + - -+ 4 Oz, where 61 + --- + 0, = 1, as an affine combination
of the points z1, ..., ;. Using induction from the definition of affine set (i.e.,
that it contains every affine combination of two points in it), it can be shown that
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Figure 2.1 The line passing through z; and x2 is described parametrically
by 0x1 + (1 — 0)z2, where 0 varies over R. The line segment between x1 and
2, which corresponds to 6 between 0 and 1, is shown darker.

an affine set contains every affine combination of its points: If C' is an affine set,
Z1,...,x € C,and 61 + - -+ 0 = 1, then the point 6,21 + - - - + 0z also belongs
to C.

If C is an affine set and xy € C, then the set

V=C-zo={x—x0|z€C}

is a subspace, i.e., closed under sums and scalar multiplication. To see this, suppose
v1, v2 € V and a, B € R. Then we have v; + zg € C and vy + x¢ € C, and so

avy + v + x9 = a(vy + o) + f(va +x0) + (1 —a — Bag € C,

since C is affine, and a + 4 (1 — o — ) = 1. We conclude that avy + v € V,
since avy + Bvg + a9 € C.
Thus, the affine set C' can be expressed as

O=V+1‘0={’U+J?0|’U€V},

i.e., as a subspace plus an offset. The subspace V' associated with the affine set C'
does not depend on the choice of xg, so xy can be chosen as any point in C. We
define the dimension of an affine set C as the dimension of the subspace V' = C'—z,
where x is any element of C.

Example 2.1 Solution set of linear equations. The solution set of a system of linear
equations, C = {z | Az = b}, where A € R™*"™ and b € R™, is an affine set. To
show this, suppose 1, x2 € C, i.e., Ax1 = b, Axre = b. Then for any 0, we have
A(@Il + (1 — G)Ig) = 0QAxi + (1 — 9)A.’L‘2

= 60b+(1-06)

= b,
which shows that the affine combination 6x1 + (1 — )2 is also in C. The subspace
associated with the affine set C' is the nullspace of A.

We also have a converse: every affine set can be expressed as the solution set of a
system of linear equations.
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The set of all affine combinations of points in some set C C R" is called the
affine hull of C, and denoted aff C"

aﬁ'C:{01z1+~~~+9kxk|:z:1,...,9:k€C’, 91++9k:1}

The affine hull is the smallest affine set that contains C, in the following sense: if
S is any affine set with C' C .S, then aff C' C S.

Affine dimension and relative interior

We define the affine dimension of a set C' as the dimension of its affine hull. Affine
dimension is useful in the context of convex analysis and optimization, but is not
always consistent with other definitions of dimension. As an example consider the
unit circle in R?, i.e., {x € R* | 2} + 23 = 1}. Tts affine hull is all of R?, so its
affine dimension is two. By most definitions of dimension, however, the unit circle
in R? has dimension one.

If the affine dimension of a set C' C R" is less than n, then the set lies in
the affine set aff C' # R"™. We define the relative interior of the set C, denoted
relint C, as its interior relative to aff C:

relint C = {z € C | B(z,r)Naff C C C for some r > 0},

where B(z,r) = {y | |ly — z|| < r}, the ball of radius r and center z in the norm
|| - ||. (Here || - || is any norm; all norms define the same relative interior.) We can
then define the relative boundary of a set C' as clC' \ relint C, where clC is the
closure of C.

Example 2.2 Consider a square in the (1, 22)-plane in R?, defined as
C={zeR’| —1<& <1, -1<@; <1, 23 =0}

Its affine hull is the (z1, z2)-plane, i.e., aff C = {z € R® | x3 = 0}. The interior of C
is empty, but the relative interior is

relintC = {z € R’ | —1 <z <1, -1 <z <1, z3 =0}.
Its boundary (in R?) is itself; its relative boundary is the wire-frame outline,

{z € R® | max{|z1],|z2|} =1, 3 = 0}.

2.1.4 Convex sets

A set C' is conver if the line segment between any two points in C lies in C, i.e.,
if for any x1, x2 € C and any 6 with 0 < 8 < 1, we have

Oxq + (1 — 9)332 eC.
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Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

L] (e

Figure 2.3 The convex hulls of two sets in R?. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R?.

We call a point of the form 61z + - -+ + Oxxy, where 1 + --- + 6 = 1 and
0; >0,i=1,...,k, a convex combination of the points x1, ..., rr. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with 6; the fraction of z; in the mixture.

The convez hull of a set C', denoted conv C| is the set of all convex combinations
of points in C:

convC ={b1x1+- -+ Oz |z, €C, 6, >0, i=1,....k 01 4+---+ 60, =1}

As the name suggests, the convex hull conv C' is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C', then conv C' C
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose 61,65, ...
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satisfy
0; >0, i=12.., > 6;=1,
i=1
and x1,%o2,... € C, where C C R" is convex. Then

i O;,x; € C,
i=1

if the series converges. More generally, suppose p : R" — R satisfies p(z) > 0 for
all z € C and [, p(z) de =1, where C' C R" is convex. Then

/ p(x)z dx € C,
c

if the integral exists.

In the most general form, suppose C C R is convex and z is a random vector
with x € C with probability one. Then Ex € C. Indeed, this form includes all
the others as special cases. For example, suppose the random variable x only takes
on the two values z1 and x5, with prob(z = z1) = 6 and prob(z = z2) =1 -6,
where 0 < 0 < 1. Then Ez = 621 + (1 — §)z5, and we are back to a simple convex
combination of two points.

Cones

A set C'is called a cone, or nonnegative homogeneous, if for every z € C' and 6 > 0
we have 0z € C. A set C is a convex cone if it is convex and a cone, which means
that for any x1, x2 € C' and 61, 03 > 0, we have

0121 + 0229 € C.

Points of this form can be described geometrically as forming the two-dimensional
pie slice with apex 0 and edges passing through z1 and x5. (See figure 2.4.)

A point of the form 6121 + --- + Opxp with 61,...,60; > 0 is called a conic
combination (or a nonnegative linear combination) of xy,...,xp. If x; are in a
convex cone C'; then every conic combination of z; is in C. Conversely, a set C' is
a convex cone if and only if it contains all conic combinations of its elements. Like
convex (or affine) combinations, the idea of conic combination can be generalized
to infinite sums and integrals.

The conic hull of a set C' is the set of all conic combinations of points in C, i.e.,

{91x1+"'+01€$k|x1‘60, 6; >0, iZl,...,k},

which is also the smallest convex cone that contains C' (see figure 2.5).
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1

0

Figure 2.4 The pie slice shows all points of the form 61x1 + 6222, where
01, 62 > 0. The apex of the slice (which corresponds to 61 = 62 = 0) is at
0; its edges (which correspond to 61 = 0 or 62 = 0) pass through the points
z1 and za.

0 0
Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.
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Some important examples

In this section we describe some important examples of convex sets which we will
encounter throughout the rest of the book. We start with some simple examples.

e The empty set @, any single point (i.e., singleton) {zg}, and the whole space
R" are affine (hence, convex) subsets of R".

e Any line is affine. If it passes through zero, it is a subspace, hence also a
convex cone.

e A line segment is convex, but not affine (unless it reduces to a point).

e A ray, which has the form {z + v | > 0}, where v # 0, is convex, but not
affine. It is a convex cone if its base x is 0.

e Any subspace is affine, and a convex cone (hence convex).

Hyperplanes and halfspaces

A hyperplane is a set of the form
{w | aTz = b},

where a € R", a # 0, and b € R. Analytically it is the solution set of a nontrivial
linear equation among the components of z (and hence an affine set). Geometri-
cally, the hyperplane {z | a2 = b} can be interpreted as the set of points with a
constant inner product to a given vector a, or as a hyperplane with normal vector
a; the constant b € R determines the offset of the hyperplane from the origin. This
geometric interpretation can be understood by expressing the hyperplane in the
form
{z|a" (z —20) = 0},

where z is any point in the hyperplane (i.e., any point that satisfies a’x¢ = b).
This representation can in turn be expressed as

{z | aT(x—xo) =0} = zo 4 a’,

where a' denotes the orthogonal complement of a, i.e., the set of all vectors or-
thogonal to it:
at = {v]aTv=0}.

This shows that the hyperplane consists of an offset xg, plus all vectors orthog-
onal to the (normal) vector a. These geometric interpretations are illustrated in
figure 2.6.
A hyperplane divides R" into two halfspaces. A (closed) halfspace is a set of
the form
{z|az <D}, (2.1)

where a # 0, i.e., the solution set of one (nontrivial) linear inequality. Halfspaces
are convex, but not affine. This is illustrated in figure 2.7.
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Zo

atz =0

Figure 2.6 Hyperplane in R?, with normal vector ¢ and a point zo in the
hyperplane. For any point z in the hyperplane, x — zo (shown as the darker
arrow) is orthogonal to a.

Zo

Figure 2.7 A hyperplane defined by a”= = bin R? determines two halfspaces.
The halfspace determined by a”z > b (not shaded) is the halfspace extending
in the direction a. The halfspace determined by aTz < b (which is shown
shaded) extends in the direction —a. The vector a is the outward normal of
this halfspace.
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Figure 2.8 The shaded set is the halfspace determined by a” (z — z0) < 0.
The vector 1 —xp makes an acute angle with a, so 1 is not in the halfspace.
The vector x2 — 2o makes an obtuse angle with a, and so is in the halfspace.

The halfspace (2.1) can also be expressed as
{z | a”(z — z0) <0}, (2.2)

where z( is any point on the associated hyperplane, i.e., satisfies a’xg = b. The
representation (2.2) suggests a simple geometric interpretation: the halfspace con-
sists of g plus any vector that makes an obtuse (or right) angle with the (outward
normal) vector a. This is illustrated in figure 2.8.

The boundary of the halfspace (2.1) is the hyperplane {z | a’x = b}. The set
{z | a¥z < b}, which is the interior of the halfspace {z | aTz < b}, is called an
open halfspace.

Euclidean balls and ellipsoids
A (Euclidean) ball (or just ball) in R™ has the form
B(ae,r) = {z | o —aellz < 7} = {z | (z = 20)" (2 — xc) <o},
where r > 0, and || - ||2 denotes the Euclidean norm, i.e., ||ull2 = (uu)'/2. The
vector z. is the center of the ball and the scalar r is its radius; B(x.,r) consists

of all points within a distance r of the center z.. Another common representation
for the Fuclidean ball is

Blwe,r) = {xe +ru| [lul2 <1}.
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2.2.3

Figure 2.9 An ellipsoid in R?, shown shaded. The center z. is shown as a
dot, and the two semi-axes are shown as line segments.

A Euclidean ball is a convex set: if ||z1 — z¢lla < 7, |22 — 2zc|l2 < r, and
0<6 <1, then
1021 + (1 = 0)xg —xclla = [|0(x1 — ) + (1 = 0)(22 — )2
Ollzy — wella + (1 = 0) |22 — |2
r.

[VARVAN

(Here we use the homogeneity property and triangle inequality for ||-||2; see §A.1.2.)
A related family of convex sets is the ellipsoids, which have the form

E={z|(z—z)"P Yz —2.) <1}, (2.3)

where P = PT 0, i.e., P is symmetric and positive definite. The vector x. € R"
is the center of the ellipsoid. The matrix P determines how far the ellipsoid extends
in every direction from x.; the lengths of the semi-axes of £ are given by v/);, where
\; are the eigenvalues of P. A ball is an ellipsoid with P = r2I. Figure 2.9 shows
an ellipsoid in R?.

Another common representation of an ellipsoid is

& =A{rc+ Au | [lul2 <1}, (2.4)

where A is square and nonsingular. In this representation we can assume without
loss of generality that A is symmetric and positive definite. By taking A = P'/2,
this representation gives the ellipsoid defined in (2.3). When the matrix A in (2.4)
is symmetric positive semidefinite but singular, the set in (2.4) is called a degenerate
ellipsoid; its affine dimension is equal to the rank of A. Degenerate ellipsoids are
also convex.

Norm balls and norm cones

Suppose ||-|| is any norm on R™ (see §A.1.2). From the general properties of norms it
can be shown that a norm ball of radius r and center ., given by {z | [|[z—z.| <7},
is convex. The norm cone associated with the norm || - || is the set

C={(at)]llz] <t} SR
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Figure 2.10 Boundary of second-order cone in R?, {(z1, z2,t) | (z7+23)"/? <

ny

It is (as the name suggests) a convex cone.

Example 2.3 The second-order cone is the norm cone for the Euclidean norm, i.e.,
C = {@=t)eR"||z]2<t}

{EIETT A= e}

The second-order cone is also known by several other names. It is called the quadratic
cone, since it is defined by a quadratic inequality. It is also called the Lorentz cone
or ice-cream cone. Figure 2.10 shows the second-order cone in R3.

2.2.4 Polyhedra

A polyhedron is defined as the solution set of a finite number of linear equalities
and inequalities:

P =A{z| aszgbj, j=1,...,m, cfx:dj, ji=1,....p} (2.5)
A polyhedron is thus the intersection of a finite number of halfspaces and hyper-
planes. Affine sets (e.g., subspaces, hyperplanes, lines), rays, line segments, and
halfspaces are all polyhedra. It is easily shown that polyhedra are convex sets.
A bounded polyhedron is sometimes called a polytope, but some authors use the
opposite convention (i.e., polytope for any set of the form (2.5), and polyhedron
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Figure 2.11 The polyhedron P (shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, ....,as.

when it is bounded). Figure 2.11 shows an example of a polyhedron defined as the
intersection of five halfspaces.
It will be convenient to use the compact notation

P={x]| Az <b, Cx=d} (2.6)
for (2.5), where
af cf
A= ’ C= ’
al )

and the symbol < denotes vector inequality or componentwise inequality in R™:
u < v means u; <v; fort=1,...,m.

Example 2.4 The nonnegative orthant is the set of points with nonnegative compo-
nents, i.e.,

"={zeR"|2;>0,i=1,...,n}={z €R" |2 > 0}.

(Here R4+ denotes the set of nonnegative numbers: Ry = {z € R | z > 0}.) The
nonnegative orthant is a polyhedron and a cone (and therefore called a polyhedral
cone).

Simplexes

Simplezes are another important family of polyhedra. Suppose the k + 1 points
vg,...,vx € R"™ are affinely independent, which means vy — vg,..., U, — vg are
linearly independent. The simplex determined by them is given by

C = conv{vy,...,v;} = {Oovo + - -+ Oy | 0 =0, 170 =1}, (2.7)
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where 1 denotes the vector with all entries one. The affine dimension of this simplex
is k, so it is sometimes referred to as a k-dimensional simplex in R".

Example 2.5 Some common simplexes. A 1-dimensional simplex is a line segment;
a 2-dimensional simplex is a triangle (including its interior); and a 3-dimensional
simplex is a tetrahedron.

The unit simplex is the n-dimensional simplex determined by the zero vector and the
unit vectors, i.e., 0, e1,...,e, € R™. It can be expressed as the set of vectors that
satisfy

The probability simplex is the (n — 1)-dimensional simplex determined by the unit
vectors e1,...,e, € R™. Tt is the set of vectors that satisfy

x>0, 1Tz =1.

Vectors in the probability simplex correspond to probability distributions on a set
with n elements, with z; interpreted as the probability of the ith element.

To describe the simplex (2.7) as a polyhedron, i.e., in the form (2.6), we proceed
as follows. By definition, x € C if and only if z = Oyvg + 01v1 + - - - + 0wy, for some
6 = 0 with 176 = 1. Equivalently, if we define y = (01,...,60;) and

B=[vi—v - vp—1u | e R,
we can say that z € C if and only if
x =wvo+ By (2.8)

for some 3 = 0 with 17y < 1. Now we note that affine independence of the
points vy, ...,v; implies that the matrix B has rank k. Therefore there exists a
nonsingular matrix A = (A1, Az) € R™™" such that

A | I
AB_[AJB_[O].
Multiplying (2.8) on the left with A, we obtain

Aix = Ajvg + Y, Asx = Aguyg.

From this we see that z € C if and only if Asx = Ajvg, and the vector y =
Az — Ajvg satisfies y = 0 and 17y < 1. In other words we have z € C' if and only
if

Asx = Asvyg, Az > Aqvg, lTAlx <14+ ].TAlvo,

which is a set of linear equalities and inequalities in z, and so describes a polyhe-
dron.
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2.2.5

Convex hull description of polyhedra

The convex hull of the finite set {vy,...,v;} is
conv{vy,...,v} = {bhv1 + - + 0o | 6 = 0, 179 = 1}.

This set is a polyhedron, and bounded, but (except in special cases, e.g., a simplex)
it is not simple to express it in the form (2.5), i.e., by a set of linear equalities and
inequalities.

A generalization of this convex hull description is

{91v1+-~+0kvk|01+~~+0m:1, 9120, iil,...,k}, (29)

where m < k. Here we consider nonnegative linear combinations of v;, but only
the first m coefficients are required to sum to one. Alternatively, we can inter-
pret (2.9) as the convex hull of the points vy,..., v, plus the conic hull of the
points vp41,...,0k. The set (2.9) defines a polyhedron, and conversely, every
polyhedron can be represented in this form (although we will not show this).

The question of how a polyhedron is represented is subtle, and has very im-
portant practical consequences. As a simple example consider the unit ball in the
loo-norm in R™,

C={z||z;] <1,i=1,...,n}

The set C can be described in the form (2.5) with 2n linear inequalities +efx < 1,
where e; is the ith unit vector. To describe it in the convex hull form (2.9) requires
at least 2" points:

C = conv{vy,...,van },

where v1,...,v9n are the 2™ vectors all of whose components are 1 or —1. Thus
the size of the two descriptions differs greatly, for large n.

The positive semidefinite cone
We use the notation S™ to denote the set of symmetric n X n matrices,
Sn _ {X c Rnxn | X:XT},

which is a vector space with dimension n(n 4 1)/2. We use the notation S’} to
denote the set of symmetric positive semidefinite matrices:

ST ={XeS"| X =0},
and the notation S, to denote the set of symmetric positive definite matrices:
ST, ={XeS"|X >0}

(This notation is meant to be analogous to R, which denotes the nonnegative
reals, and R, which denotes the positive reals.)



2.3 Operations that preserve convexity 35

Figure 2.12 Boundary of positive semidefinite cone in S2.

The set S} is a convex cone: if 61,6, > 0 and A, B € S'}, then ;A+60,B € S’}
This can be seen directly from the definition of positive semidefiniteness: for any
z € R", we have

27(01A+ 02B)x = 6127 Az + Oo2” Bx > 0,

1fAi0,Bthnd01,0220

Example 2.6 Positive semidefinite cone in S?. We have

X:|:§ z:|€Si <~ x>0, z2>0, a:zZyQ.

The boundary of this cone is shown in figure 2.12, plotted in R® as (z,y,2).

2.3 Operations that preserve convexity

In this section we describe some operations that preserve convexity of sets, or
allow us to construct convex sets from others. These operations, together with the
simple examples described in §2.2, form a calculus of convex sets that is useful for
determining or establishing convexity of sets.
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2.3.1

2.3.2

Intersection

Convexity is preserved under intersection: if S; and Sy are convex, then S; NS5 is
convex. This property extends to the intersection of an infinite number of sets: if
Sy is convex for every o € A, then (), 4 Sa is convex. (Subspaces, affine sets, and
convex cones are also closed under arbitrary intersections.) As a simple example,
a polyhedron is the intersection of halfspaces and hyperplanes (which are convex),
and therefore is convex.

Example 2.7 The positive semidefinite cone S’ can be expressed as

({xes™|z"xz>0}.
z#0
For each z # 0, 27 X z is a (not identically zero) linear function of X, so the sets
{Xes"|z"Xz>0}

are, in fact, halfspaces in S™. Thus the positive semidefinite cone is the intersection
of an infinite number of halfspaces, and so is convex.

Example 2.8 We consider the set
S={zeR"||pt)] <1 for |t| < m/3}, (2.10)

where p(t) = Z;:;l xi coskt. The set S can be expressed as the intersection of an
infinite number of slabs: S = ﬂ|t|<ﬂ/3 S, where

S; ={x| —1< (cost,...,cosmt)"xz <1},

and so is convex. The definition and the set are illustrated in figures 2.13 and 2.14,
for m = 2.

In the examples above we establish convexity of a set by expressing it as a
(possibly infinite) intersection of halfspaces. We will see in §2.5.1 that a converse
holds: every closed convex set S is a (usually infinite) intersection of halfspaces.
In fact, a closed convex set S is the intersection of all halfspaces that contain it:

S = m {H | H halfspace, S C H}.

Affine functions

Recall that a function f : R™ — R™ is affine if it is a sum of a linear function and
a constant, i.e., if it has the form f(z) = Az + b, where A € R™*" and b € R™.
Suppose S C R" is convex and f : R™ — R™ is an affine function. Then the image
of S under f,

f(8) ={f(z) |z €5},
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0 /3 ; 27/3 i
Figure 2.13 Three trigonometric polynomials associated with points in the
set S defined in (2.10), for m = 2. The trigonometric polynomial plotted
with dashed line type is the average of the other two.

2

—2
-2

1

Figure 2.14 The set S defined in (2.10), for m = 2, is shown as the white
area in the middle of the plot. The set is the intersection of an infinite
number of slabs (20 of which are shown), hence convex.
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is convex. Similarly, if f : R¥ — R" is an affine function, the inverse image of S
under f,
F7H8) =A{z | f(z) € S},
is convex.
Two simple examples are scaling and translation. If S C R" is convex, a € R,
and a € R", then the sets S and S + a are convex, where

aS ={ax |z e S}, S+a={x+alxzeS}

The projection of a convex set onto some of its coordinates is convex: if S C
R™ x R" is convex, then

T ={z1 € R" | (x1,22) € S for some x5 € R"}

is convex.
The sum of two sets is defined as

S1+Sy={z+y|xz e, ye S}

If S; and Sy are convex, then Sy + S is convex. To see this, if S; and Sy are
convex, then so is the direct or Cartesian product

Sl X 52 = {(.’171,1‘2) | xr1 € Sl, To € SQ}

The image of this set under the linear function f(z1,22) = x1 + x2 is the sum
S1 + Ss.
We can also consider the partial sum of S1, So € R™ x R™, defined as

S = {(xayl +y2) ‘ (xayl) € Sl7 ($7y2) € S2}7

where z € R™ and y; € R™. For m = 0, the partial sum gives the intersection of
S1 and So; for n = 0, it is set addition. Partial sums of convex sets are convex (see
exercise 2.16).

Example 2.9 Polyhedron. The polyhedron {z | Az < b, Cx = d} can be expressed as
the inverse image of the Cartesian product of the nonnegative orthant and the origin
under the affine function f(z) = (b — Az,d — Cz):

{z| Az b, Cx=d} ={z | f(z) e R} x {0}}.

Example 2.10 Solution set of linear matriz inequality. The condition
Alz) =214A1 4+ -+ 2o An 2 B, (2.11)

where B, A; € S™, is called a linear matriz inequality (LMI) in z. (Note the similarity
to an ordinary linear inequality,

aTx:zlal + -4 xpan, < b,
with b, a; € R.)

The solution set of a linear matrix inequality, {z | A(z) =< B}, is convex. Indeed,
it is the inverse image of the positive semidefinite cone under the affine function
f:R"™ — S™ given by f(z) = B — A(z).
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Example 2.11 Hyperbolic cone. The set
{z| 2" Pz < ("z)?, "z >0}

where P € S} and ¢ € R", is convex, since it is the inverse image of the second-order
cone,
{(z,t) | 272z < ¢, t >0},

under the affine function f(z) = (P*/%z,c"z).

Example 2.12 FEllipsoid. The ellipsoid
E={o|(w—w) P N (w—w) <1}
where P € S, is the image of the unit Euclidean ball {u | |Jull2 < 1} under the

affine mapping f(u) = PY2y 4z, (It is also the inverse image of the unit ball under
the affine mapping g(z) = P~"2(z — z.).)

Linear-fractional and perspective functions

In this section we explore a class of functions, called linear-fractional, that is more
general than affine but still preserves convexity.

The perspective function

We define the perspective function P : R"™ — R"™, with domain dom P = R™ x
Ry, as P(z,t) = z/t. (Here R4 denotes the set of positive numbers: R4 =
{z € R |z > 0}.) The perspective function scales or normalizes vectors so the last
component is one, and then drops the last component.

Remark 2.1 We can interpret the perspective function as the action of a pin-hole
camera. A pin-hole camera (in RS) consists of an opaque horizontal plane x3 = 0,
with a single pin-hole at the origin, through which light can pass, and a horizontal
image plane z3 = —1. An object at =, above the camera (i.e., with z3 > 0), forms
an image at the point —(x1/z3,z2/x3,1) on the image plane. Dropping the last
component of the image point (since it is always —1), the image of a point at x
appears at y = —(z1/x3,22/x3) = —P(z) on the image plane. This is illustrated in
figure 2.15.

If C C dom P is convex, then its image
P(C) ={P(z) |z € C}

is convex. This result is certainly intuitive: a convex object, viewed through a
pin-hole camera, yields a convex image. To establish this fact we show that line
segments are mapped to line segments under the perspective function. (This too
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Figure 2.15 Pin-hole camera interpretation of perspective function. The
dark horizontal line represents the plane 3 = 0 in R3, which is opaque,
except for a pin-hole at the origin. Objects or light sources above the plane
appear on the image plane x3s = —1, which is shown as the lighter horizontal
line. The mapping of the position of a source to the position of its image is
related to the perspective function.

makes sense: a line segment, viewed through a pin-hole camera, yields a line seg-
ment image.) Suppose that & = (Z,2,11), ¥ = (§,Yns1) € R" with 2,41 > 0,
Yn+1 > 0. Then for 0 <0 <1,

i+ (1-0)
0zni1 + (1= 0)yns1

P(fx + (1 -0)y) = pP(@) + (1 - p)Py),

where
Ox n+1

H Hanrl + (1 - e)ynJrl

This correspondence between 6 and p is monotonic: as 6 varies between 0 and 1
(which sweeps out the line segment [z, y]), u varies between 0 and 1 (which sweeps
out the line segment [P(z), P(y)]). This shows that P([z,y]) = [P(x), P(y)].

Now suppose C is convex with C C dom P (i.e., ,,+1 > 0 for all z € C), and
x, y € C. To establish convexity of P(C) we need to show that the line segment
[P(z),P(y)] is in P(C). But this line segment is the image of the line segment
[,y] under P, and so lies in P(C).

The inverse image of a convex set under the perspective function is also convex:
if C C R" is convex, then

€ [0,1].

PHC) = {(x,t) e R"™ |2/t € C, t > 0}

is convex. To show this, suppose (z,t) € P~1(C), (y,s) € P~}(C),and 0 < 0 < 1.
We need to show that

0(z,t) + (1 — 0)(y,s) € P~H0),

i.e., that
Oz + (1-0)y

it (1—6)s - C
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(0t + (1 — 0)s > 0 is obvious). This follows from

g = )+ (1= (),
where B o .
=g < U

Linear-fractional functions

A linear-fractional function is formed by composing the perspective function with
an affine function. Suppose g : R™ — R™ " is affine, i.e.,

g(x)={c‘i]x+{2y (2.12)

where A € R™*", b€ R™, c € R", and d € R. The function f : R" — R™ given
by f=Pog, ie.,

f(x) = (Az +b)/(c"x + d), dom f = {z | Tz +d > 0}, (2.13)

is called a linear-fractional (or projective) function. If ¢ = 0 and d > 0, the domain
of fis R", and f is an affine function. So we can think of affine and linear functions
as special cases of linear-fractional functions.

Remark 2.2 Projective interpretation. It is often convenient to represent a linear-
fractional function as a matrix

Q= { C’i Z } e RUmHDx(ntD (2.14)

that acts on (multiplies) points of form (z, 1), which yields (Az + b,cTa + d). This
result is then scaled or normalized so that its last component is one, which yields
(f(z),1).

This representation can be interpreted geometrically by associating R™ with a set
of rays in R™"! as follows. With each point z in R™ we associate the (open) ray
P(z) = {t(z,1) | t > 0} in R""!. The last component of this ray takes on positive
values. Conversely any ray in R""!, with base at the origin and last component
which takes on positive values, can be written as P(v) = {t(v,1) | t > 0} for some
v € R"™. This (projective) correspondence P between R™ and the halfspace of rays
with positive last component is one-to-one and onto.

The linear-fractional function (2.13) can be expressed as
@) =P (QP(x).

Thus, we start with € dom f, i.e., c'x 4+ d > 0. We then form the ray P(z) in
R""!. The linear transformation with matrix Q acts on this ray to produce another
ray QP(z). Since z € dom f, the last component of this ray assumes positive values.
Finally we take the inverse projective transformation to recover f(z).




42

2 Convex sets

1 ~
\\
\\
\\
: 50 \
\\
N _1 L
—1 0 1 —1 0 1
T1 T1

Figure 2.16 Left. A set C C R?. The dashed line shows the boundary of
the domain of the linear-fractional function f(x) = z/(z1 + x2 + 1) with
dom f = {(z1,22) | z1 + z2 + 1 > 0}. Right. Image of C under f. The
dashed line shows the boundary of the domain of f~*.

Like the perspective function, linear-fractional functions preserve convexity. If

C is convex and lies in the domain of f (i.e., cf'x +d > 0 for z € C), then its
image f(C) is convex. This follows immediately from results above: the image of C
under the affine mapping (2.12) is convex, and the image of the resulting set under
the perspective function P, which yields f(C), is convex. Similarly, if C' C R™ is
convex, then the inverse image f~!(C) is convex.

Example 2.13 Conditional probabilities. Suppose u and v are random variables
that take on values in {1,...,n} and {1,...,m}, respectively, and let p;; denote
prob(u = i¢,v = j). Then the conditional probability f;; = prob(u = i|lv = j) is
given by
fij = npij .
Zk:l Dkj

Thus f is obtained by a linear-fractional mapping from p.

It follows that if C' is a convex set of joint probabilities for (u,v), then the associated
set of conditional probabilities of u given v is also convex.

Figure 2.16 shows a set C C R?, and its image under the linear-fractional

function

1

—_—=, dom f = {(z1,22) | z1 + 2 + 1 > 0}.
P f=A(z1,22) | 21 + 22 }

fx) =
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2.4 Generalized inequalities

Generalized inequalities

Proper cones and generalized inequalities

A cone K C R" is called a proper cone if it satisfies the following:

e K is convex.
e K is closed.
e K is solid, which means it has nonempty interior.

e K is pointed, which means that it contains no line (or equivalently, = €
K, —ze K = z=0).

A proper cone K can be used to define a generalized inequality, which is a partial
ordering on R" that has many of the properties of the standard ordering on R.
We associate with the proper cone K the partial ordering on R" defined by

T3xy <= y—xr <€ K.

We also write = > y for y <x . Similarly, we define an associated strict partial
ordering by
T<gyY <= y—zx€intK,

and write © =) y for y <x z. (To distinguish the generalized inequality =<g
from the strict generalized inequality, we sometimes refer to <k as the nonstrict
generalized inequality.)

When K = R, the partial ordering <x is the usual ordering < on R, and
the strict partial ordering <x is the same as the usual strict ordering < on R.
So generalized inequalities include as a special case ordinary (nonstrict and strict)
inequality in R.

Example 2.14 Nonnegative orthant and componentwise inequality. The nonnegative
orthant K = R is a proper cone. The associated generalized inequality <x corre-
sponds to componentwise inequality between vectors: x <k y means that z; < y;,
i = 1,...,n. The associated strict inequality corresponds to componentwise strict
inequality: <k y means that z; < y;, ¢t =1,...,n.

The nonstrict and strict partial orderings associated with the nonnegative orthant
arise so frequently that we drop the subscript R ; it is understood when the symbol
= or < appears between vectors.

Example 2.15 Positive semidefinite cone and matriz inequality. The positive semidef-
inite cone S% is a proper cone in S™. The associated generalized inequality <k is the
usual matrix inequality: X <g Y means Y — X is positive semidefinite. The inte-
rior of S (in S™) consists of the positive definite matrices, so the strict generalized
inequality also agrees with the usual strict inequality between symmetric matrices:
X <k Y means Y — X is positive definite.

Here, too, the partial ordering arises so frequently that we drop the subscript: for
symmetric matrices we write simply X <Y or X < Y. It is understood that the
generalized inequalities are with respect to the positive semidefinite cone.
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Example 2.16 Cone of polynomials nonnegative on [0,1]. Let K be defined as
K={ceR"|ci+cat+ - +ecat" " >0fortel01]}, (2.15)
i.e., K is the cone of (coefficients of) polynomials of degree n— 1 that are nonnegative

on the interval [0,1]. It can be shown that K is a proper cone; its interior is the set
of coefficients of polynomials that are positive on the interval [0, 1].

Two vectors ¢, d € R" satisfy ¢ <k d if and only if
et ottt ent" T <diAdat A -+ dpt™ T

for all ¢ € [0,1].

Properties of generalized inequalities

A generalized inequality <y satisfies many properties, such as
o <y is preserved under addition: if x <k y and u <k v, then r+u <g y+v.
e =<y is transitive: if x <k y and y <k z then x <k z.

o < is preserved under nonnegative scaling: if x <k y and o > 0 then
ar g ay.

o <y is reflerive: v <k T.
o < is antisymmetric: if v Jg y and y <k z, then x = y.

o <y is preserved under limits: if x; | y; fori =1, 2,..., x; > xand y; — y
as i — 0o, then x <k .

The corresponding strict generalized inequality <x satisfies, for example,
o if v <) y then z <k y.
e if x < yand u <k vthen r+u <g y+v.
o if v <k y and a > 0 then ax <k ay.
o x £i x.
e if x <) y, then for v and v small enough, x +u <k y + v.

These properties are inherited from the definitions of <k and <, and the prop-
erties of proper cones; see exercise 2.30.
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Minimum and minimal elements

The notation of generalized inequality (i.e., <k, <) is meant to suggest the
analogy to ordinary inequality on R (i.e., <, <). While many properties of ordinary
inequality do hold for generalized inequalities, some important ones do not. The
most obvious difference is that < on R is a linear ordering: any two points are
comparable, meaning either x < y or y < x. This property does not hold for
other generalized inequalities. One implication is that concepts like minimum and
maximum are more complicated in the context of generalized inequalities. We
briefly discuss this in this section.

We say that « € S is the minimum element of S (with respect to the general-
ized inequality <) if for every y € S we have © <g y. We define the mazimum
element of a set S, with respect to a generalized inequality, in a similar way. If a
set has a minimum (maximum) element, then it is unique. A related concept is
minimal element. We say that « € S is a minimal element of S (with respect to
the generalized inequality <k ) if y € S, y <k « only if y = x. We define maxi-
mal element in a similar way. A set can have many different minimal (maximal)
elements.

We can describe minimum and minimal elements using simple set notation. A
point « € S is the minimum element of S if and only if

SCz+ K.

Here = + K denotes all the points that are comparable to  and greater than or
equal to z (according to < ). A point z € S is a minimal element if and only if

(x —K)NS = {z}.

Here x — K denotes all the points that are comparable to x and less than or equal
to z (according to <k ); the only point in common with S is x.

For K = R, which induces the usual ordering on R, the concepts of minimal
and minimum are the same, and agree with the usual definition of the minimum
element of a set.

Example 2.17 Consider the cone RZ, which induces componentwise inequality in
R?. Here we can give some simple geometric descriptions of minimal and minimum
elements. The inequality < y means y is above and to the right of x. To say that
x € S is the minimum element of a set S means that all other points of S lie above
and to the right. To say that x is a minimal element of a set S means that no other
point of S lies to the left and below z. This is illustrated in figure 2.17.

Example 2.18 Minimum and minimal elements of a set of symmetric matrices. We
associate with each A € S}, an ellipsoid centered at the origin, given by

Ea={z|a"A e <1}
We have A < B if and only if £4 C Ep.
Let v1,...,ux € R" be given and define

S={PeSt,|vfP v;<1,i=1,...,k},
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2.5

2.5.1

S

L1

Figure 2.17 Left. The set Si1 has a minimum element z; with respect to
componentwise inequality in R?. The set z; + K is shaded lightly; x; is
the minimum element of S; since S1 C x1 + K. Right. The point x2 is a
minimal point of S2. The set x2 — K is shown lightly shaded. The point z2
is minimal because z2 — K and S; intersect only at zs.

which corresponds to the set of ellipsoids that contain the points vi,...,v,. The
set S does not have a minimum element: for any ellipsoid that contains the points
v1,...,Vr we can find another one that contains the points, and is not comparable
to it. An ellipsoid is minimal if it contains the points, but no smaller ellipsoid does.
Figure 2.18 shows an example in R? with k = 2.

Separating and supporting hyperplanes

Separating hyperplane theorem

In this section we describe an idea that will be important later: the use of hyper-
planes or affine functions to separate convex sets that do not intersect. The basic
result is the separating hyperplane theorem: Suppose C' and D are nonempty dis-
joint convex sets, i.e., C' N D = (). Then there exist a # 0 and b such that a”z < b
forall z € C and aTx > b for all z € D. In other words, the affine function a”z —b
is nonpositive on C' and nonnegative on D. The hyperplane {z | a’z = b} is called
a separating hyperplane for the sets C' and D, or is said to separate the sets C and
D. This is illustrated in figure 2.19.

Proof of separating hyperplane theorem

Here we consider a special case, and leave the extension of the proof to the gen-
eral case as an exercise (exercise 2.22). We assume that the (Euclidean) distance
between C and D, defined as

dist(C,D) = inf{|lu —v|2 |u € C, v € D},
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Figure 2.18 Three ellipsoids in R?, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
&1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., £3). &3 is not minimal for the same reason. The ellipsoid
&2 is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in &,.

Figure 2.19 The hyperplane {z | a”2 = b} separates the disjoint convex sets
C and D. The affine function Tz — b is nonpositive on C' and nonnegative
on D.
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Figure 2.20 Construction of a separating hyperplane between two convex
sets. The points ¢ € C' and d € D are the pair of points in the two sets that
are closest to each other. The separating hyperplane is orthogonal to, and
bisects, the line segment between ¢ and d.

is positive, and that there exist points ¢ € C' and d € D that achieve the minimum
distance, i.e., |[c — d||2 = dist(C, D). (These conditions are satisfied, for example,
when C and D are closed and one set is bounded.)

Define ) )
) I3 — el

:d—
a c, 5

We will show that the affine function
fl@)=a"e—b=(d—c)"(z - (1/2)(d+¢))

is nonpositive on C' and nonnegative on D, i.e., that the hyperplane {x | a”2 = b}
separates C' and D. This hyperplane is perpendicular to the line segment between
¢ and d, and passes through its midpoint, as shown in figure 2.20.

We first show that f is nonnegative on D. The proof that f is nonpositive on
C is similar (or follows by swapping C' and D and considering — f). Suppose there
were a point u € D for which

flu) = (d—c)"'(u—(1/2)(d+c)) < 0. (2.16)
We can express f(u) as
flu)=(d—c)"(u—d+(1/2)(d - ) = (d = )" (u—d) + (1/2)||d - cl.

We see that (2.16) implies (d — ¢)”(u — d) < 0. Now we observe that

d
—|ld + t(u —d) — |3 =2(d—¢)"(u—d) <0,
dt =0

so for some small £ > 0, with ¢t < 1, we have

ld+t(u—d) —cll2 < [ld—cll2,
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i.e., the point d + t(u — d) is closer to ¢ than d is. Since D is convex and contains
d and u, we have d+t(u —d) € D. But this is impossible, since d is assumed to be
the point in D that is closest to C.

Example 2.19 Separation of an affine and a convex set. Suppose C is convex and
D is affine, i.e., D = {Fu+g | u € R™}, where F € R"*™. Suppose C and D are
disjoint, so by the separating hyperplane theorem there are a # 0 and b such that
aTz <bforallz € C and aTz > b for all z € D.

Now aTaz > b for all z € D means a¥ Fu > b — aTg for all w € R™. But a linear
function is bounded below on R™ only when it is zero, so we conclude a7 F = 0 (and
hence, b < a”g).

Thus we conclude that there exists a # 0 such that FTa = 0 and aTa < aTg for all
xzeC.

Strict separation

The separating hyperplane we constructed above satisfies the stronger condition
that a’x < b for all z € C and a’z > b for all z € D. This is called strict
separation of the sets C' and D. Simple examples show that in general, disjoint
convex sets need not be strictly separable by a hyperplane (even when the sets are
closed; see exercise 2.23). In many special cases, however, strict separation can be
established.

Example 2.20 Strict separation of a point and a closed convex set. Let C be a closed
convex set and o ¢ C. Then there exists a hyperplane that strictly separates xo
from C.

To see this, note that the two sets C' and B(zo,¢) do not intersect for some € > 0.
By the separating hyperplane theorem, there exist a # 0 and b such that ™« < b for
z € C and aTz > b for z € B(xo,¢).

Using B(zo,€) = {xo + u | ||ul|2 < €}, the second condition can be expressed as
a’(zo4u)>b forall ||lull2 <e.
The u that minimizes the lefthand side is u = —ea/||al|2; using this value we have
a’xo — €l|all2 > b.
Therefore the affine function
f(@) =T — b ellalla/2

is negative on C and positive at xo.

As an immediate consequence we can establish a fact that we already mentioned
above: a closed convex set is the intersection of all halfspaces that contain it. Indeed,
let C' be closed and convex, and let S be the intersection of all halfspaces containing
C. Obviously z € C = x € S. To show the converse, suppose there exists x € S,
x ¢ C. By the strict separation result there exists a hyperplane that strictly separates
x from C, i.e., there is a halfspace containing C but not z. In other words, = ¢ S.
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Converse separating hyperplane theorems

The converse of the separating hyperplane theorem (i.e., existence of a separating
hyperplane implies that C' and D do not intersect) is not true, unless one imposes
additional constraints on C' or D, even beyond convexity. As a simple counterex-
ample, consider C = D = {0} C R. Here the hyperplane x = 0 separates C and
D.

By adding conditions on C' and D various converse separation theorems can be
derived. As a very simple example, suppose C and D are convex sets, with C' open,
and there exists an affine function f that is nonpositive on C' and nonnegative on
D. Then C and D are disjoint. (To see this we first note that f must be negative
on C; for if f were zero at a point of C' then f would take on positive values near
the point, which is a contradiction. But then C' and D must be disjoint since f
is negative on C' and nonnegative on D.) Putting this converse together with the
separating hyperplane theorem, we have the following result: any two convex sets
C and D, at least one of which is open, are disjoint if and only if there exists a
separating hyperplane.

Example 2.21 Theorem of alternatives for strict linear inequalities. We derive the
necessary and sufficient conditions for solvability of a system of strict linear inequal-
ities

Az < b. (2.17)

These inequalities are infeasible if and only if the (convex) sets
C={b— Az |z € R"}, D=RY, ={yeR"|y> 0}

do not intersect. The set D is open; C is an affine set. Hence by the result above, C'
and D are disjoint if and only if there exists a separating hyperplane, i.e., a nonzero
A€ R™ and g € R such that ATy < pon C and ATy > pon D.

Each of these conditions can be simplified. The first means A7 (b — Az) < p for all z.
This implies (as in example 2.19) that AT X = 0 and ATb < u. The second inequality
means ATy > p for all y = 0. This implies 4 < 0 and X = 0, A # 0.

Putting it all together, we find that the set of strict inequalities (2.17) is infeasible if
and only if there exists A € R™ such that
A#£0, A= 0, ATx =0, ATb <o. (2.18)

This is also a system of linear inequalities and linear equations in the variable A € R™.
We say that (2.17) and (2.18) form a pair of alternatives: for any data A and b, exactly
one of them is solvable.

Supporting hyperplanes
Suppose C' C R", and x¢ is a point in its boundary bd C, i.e.,
g €bdC =clC\ int C.

If a # 0 satisfies a’x < a’'xg for all x € C, then the hyperplane {z | a’x = aTx}
is called a supporting hyperplane to C' at the point xy. This is equivalent to saying
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Figure 2.21 The hyperplane {z | a”x = a”xo} supports C at xo.

that the point zo and the set C are separated by the hyperplane {x | a”2 = a”x¢}.
The geometric interpretation is that the hyperplane {x | a¥2 = a®x¢} is tangent
to C at z¢, and the halfspace {z | aTz < aTxy} contains C. This is illustrated in
figure 2.21.

A basic result, called the supporting hyperplane theorem, states that for any
nonempty convex set C', and any g € bd C, there exists a supporting hyperplane to
C at zg. The supporting hyperplane theorem is readily proved from the separating
hyperplane theorem. We distinguish two cases. If the interior of C' is nonempty,
the result follows immediately by applying the separating hyperplane theorem to
the sets {z¢} and int C. If the interior of C is empty, then C' must lie in an affine
set of dimension less than n, and any hyperplane containing that affine set contains
C and zy, and is a (trivial) supporting hyperplane.

There is also a partial converse of the supporting hyperplane theorem: If a set
is closed, has nonempty interior, and has a supporting hyperplane at every point
in its boundary, then it is convex. (See exercise 2.27.)

Dual cones and generalized inequalities

Dual cones

Let K be a cone. The set
K*={y|aTy>0foralzc K} (2.19)

is called the dual cone of K. As the name suggests, K* is a cone, and is always
convex, even when the original cone K is not (see exercise 2.31).

Geometrically, y € K™ if and only if —y is the normal of a hyperplane that
supports K at the origin. This is illustrated in figure 2.22.

Example 2.22 Subspace. The dual cone of a subspace V' C R™ (which is a cone) is
its orthogonal complement V+ = {y | vTy =0 for all v € V'}.
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Figure 2.22 Left. The halfspace with inward normal y contains the cone K,
so y € K*. Right. The halfspace with inward normal z does not contain K,
soz & K*.

Example 2.23 Nonnegative orthant. The cone R is its own dual:
xTyEOforallmEO <~ y > 0.

We call such a cone self-dual.

Example 2.24 Positive semidefinite cone. On the set of symmetric n X n matrices
S™, we use the standard inner product tr(XY) = Z:J.zl Xi;Yi; (see §A.1.1). The
positive semidefinite cone S is self-dual, i.e., for X, Y € 8",

tr(XY)>0forall X =0 < Y = 0.
We will establish this fact.
Suppose Y ¢ S7'. Then there exists ¢ € R"™ with
"Yq=tr(qgd"Y) <O0.

Hence the positive semidefinite matrix X = gq” satisfies tr(XY) < 0; it follows that
Y ¢ (S1)".

Now suppose X, Y € S. We can express X in terms of its eigenvalue decomposition
as X = Z:;l X\igiqi , where (the eigenvalues) \; > 0,4 =1,...,n. Then we have

tr(YX) = tr (YZ Nigig! ) => gl Ya >0

=1 i=1

This shows that Y € (S%)*.

Example 2.25 Dual of a norm cone. Let || - || be a norm on R™. The dual of the
associated cone K = {(x,t) € R™™ | ||z|| <t} is the cone defined by the dual norm,
i.e.,

K" ={(u,v) € R""" | Jull. < v},
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where the dual norm is given by |ul|. = sup{u”z | ||z|| < 1} (see (A.1.6)).

To prove the result we have to show that
" u + tv > 0 whenever ||z <t <= ||lull. <. (2.20)

Let us start by showing that the righthand condition on (u,v) implies the lefthand
condition. Suppose [ju|l« < v, and ||z|| <t for some ¢t > 0. (If ¢t = 0, z must be zero,
so obviously u”x + vt > 0.) Applying the definition of the dual norm, and the fact
that |—z/t|| < 1, we have

u' (= /t) < Jlul+ < v,
and therefore uTz + vt > 0.
Next we show that the lefthand condition in (2.20) implies the righthand condition
in (2.20). Suppose ||u||« > v, i.e., that the righthand condition does not hold. Then
by the definition of the dual norm, there exists an = with ||z|| < 1 and z7u > v.
Taking ¢t = 1, we have

u’ (—z) +v <0,

which contradicts the lefthand condition in (2.20).

Dual cones satisfy several properties, such as:
e K™ is closed and convex.

e K; C K, implies K5 C K7.

If K has nonempty interior, then K* is pointed.

If the closure of K is pointed then K* has nonempty interior.

e K** is the closure of the convex hull of K. (Hence if K is convex and closed,
K*=K.)

(See exercise 2.31.) These properties show that if K is a proper cone, then so is its
dual K*, and moreover, that K** = K.

Dual generalized inequalities

Now suppose that the convex cone K is proper, so it induces a generalized inequality
<k- Then its dual cone K* is also proper, and therefore induces a generalized
inequality. We refer to the generalized inequality <+ as the dual of the generalized
inequality <f.

Some important properties relating a generalized inequality and its dual are:

e r =k y if and only if A < )\Ty for all A =g= 0.
e 2 < y if and only if ATz < ATy for all A =g~ 0, A # 0.

Since K = K**, the dual generalized inequality associated with <k« is <k, so
these properties hold if the generalized inequality and its dual are swapped. As a
specific example, we have A <g- p if and only if AT < p7x for all =k 0.
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Example 2.26 Theorem of alternatives for linear strict generalized inequalities. Sup-
pose K C R™ is a proper cone. Consider the strict generalized inequality

Az <5 b, (2.21)

where x € R".

We will derive a theorem of alternatives for this inequality. Suppose it is infeasible,
i.e., the affine set {b — Az | z € R"} does not intersect the open convex set int K.
Then there is a separating hyperplane, i.e., a nonzero A € R™ and p € R such that
AT(b— Az) < p for all z, and ATy > p for all y € int K. The first condition implies
ATX =0 and ATb < . The second condition implies ATy > p for all y € K, which
can only happen if A € K* and pu < 0.

Putting it all together we find that if (2.21) is infeasible, then there exists A such that
AA0,  A=g<0, ATx=0, Ab<o. (2.22)

Now we show the converse: if (2.22) holds, then the inequality system (2.21) cannot
be feasible. Suppose that both inequality systems hold. Then we have /\T(b — Azx) >
0, since A # 0, A =g+ 0, and b — Az >k 0. But using ATX = 0 we find that
AT(b— Az) = ATb < 0, which is a contradiction.

Thus, the inequality systems (2.21) and (2.22) are alternatives: for any data A, b,

exactly one of them is feasible. (This generalizes the alternatives (2.17), (2.18) for
the special case K = R".)

Minimum and minimal elements via dual inequalities

We can use dual generalized inequalities to characterize minimum and minimal
elements of a (possibly nonconvex) set S C R™ with respect to the generalized
inequality induced by a proper cone K.

Dual characterization of minimum element

We first consider a characterization of the minimum element: z is the minimum
element of S, with respect to the generalized inequality <, if and only if for all
A =f- 0, z is the unique minimizer of ATz over z € S. Geometrically, this means
that for any A =g~ 0, the hyperplane

{z| \'(z —2) =0}

is a strict supporting hyperplane to S at z. (By strict supporting hyperplane, we
mean that the hyperplane intersects S only at the point x.) Note that convexity
of the set S is not required. This is illustrated in figure 2.23.

To show this result, suppose z is the minimum element of S, i.e., z <k z for
all z € S, and let A =g+ 0. Let z € S, z # . Since z is the minimum element of
S, we have z —x = 0. From A =g+ 0 and z —x =g 0, z — x # 0, we conclude
M'(z —x) > 0. Since z is an arbitrary element of S, not equal to z, this shows
that x is the unique minimizer of ATz over z € S. Conversely, suppose that for all
A =g~ 0, = is the unique minimizer of ATz over z € S, but z is not the minimum
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Figure 2.23 Dual characterization of minimum element. The point x is the
minimum element of the set S with respect to Ri. This is equivalent to:

for every A > 0, the hyperplane {z | AT (z — =) = 0} strictly supports S at
x, i.e., contains S on one side, and touches it only at x.

glcmcnt of S. :icn there exists z € S with z /i . Since z — x % 0, there exists
A =k 0 with AT (2 —2) < 0. Hence AT (z—x) < 0 for A -k~ 0 in the neighborhood
of A\. This contradicts the assumption that z is the unique minimizer of Az over

S.

Dual characterization of minimal elements

We now turn to a similar characterization of minimal elements. Here there is a gap
between the necessary and sufficient conditions. If A - 0 and 2 minimizes ATz
over z € S, then x is minimal. This is illustrated in figure 2.24.

To show this, suppose that A >+ 0, and z minimizes A z over S, but z is not
minimal, i.e., there exists a z € S, z # z, and z < x. Then A\ (z — 2) > 0, which
contradicts our assumption that z is the minimizer of ATz over S.

The converse is in general false: a point x can be minimal in S, but not a
minimizer of ATz over z € S, for any A, as shown in figure 2.25. This figure
suggests that convexity plays an important role in the converse, which is correct.
Provided the set S is convex, we can say that for any minimal element x there
exists a nonzero A =g+ 0 such that z minimizes ATz over z € S.

To show this, suppose z is minimal, which means that ((x — K) \ {z})nS = 0.
Applying the separating hyperplane theorem to the convex sets (z — K) \ {z} and
S, we conclude that there is a A # 0 and p such that AT (z —y) < p forally € K,
and ATz > u for all z € S. From the first inequality we conclude A =g+ 0. Since
z € Sand z € x — K, we have AT2 = u, so the second inequality implies that u
is the minimum value of ATz over S. Therefore, x is a minimizer of ATz over S,
where A #£ 0, A =~ 0.

This converse theorem cannot be strengthened to A =g+ 0. Examples show
that a point £ can be a minimal point of a convex set .S, but not a minimizer of
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A2
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Figure 2.24 A set S C R?. Its set of minimal points, with respect to Ri, is
shown as the darker section of its (lower, left) boundary. The minimizer of
ATz over S is z1, and is minimal since A\; > 0. The minimizer of A3z over
S is xa, which is another minimal point of S, since Az > 0.

Figure 2.25 The point z is a minimal element of S C R? with respect to
R?Z. However there exists no A for which  minimizes ATz over z € S.
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Figure 2.26 Left. The point z1 € Si is minimal, but is not a minimizer of
ATz over S, for any A > 0. (It does, however, minimize ATz over z € S, for
A =(1,0).) Right. The point x2 € S3 is not minimal, but it does minimize
ATz over z € Sy for A = (0,1) > 0.

ATz over z € S for any A\ =g~ 0. (See figure 2.26, left.) Nor is it true that any
minimizer of ATz over z € S, with A\ =g+ 0, is minimal (see figure 2.26, right.)

Example 2.27 Pareto optimal production frontier. We consider a product which
requires n resources (such as labor, electricity, natural gas, water) to manufacture.
The product can be manufactured or produced in many ways. With each production
method, we associate a resource vector x € R", where z; denotes the amount of
resource i consumed by the method to manufacture the product. We assume that x; >
0 (i.e., resources are consumed by the production methods) and that the resources
are valuable (so using less of any resource is preferred).

The production set P C R" is defined as the set of all resource vectors = that
correspond to some production method.

Production methods with resource vectors that are minimal elements of P, with
respect to componentwise inequality, are called Pareto optimal or efficient. The set
of minimal elements of P is called the efficient production frontier.

We can give a simple interpretation of Pareto optimality. We say that one production
method, with resource vector x, is better than another, with resource vector y, if
x; < y; for all 4, and for some i, x; < y;. In other words, one production method
is better than another if it uses no more of each resource than another method, and
for at least one resource, actually uses less. This corresponds to = < y,  # y. Then
we can say: A production method is Pareto optimal or efficient if there is no better
production method.
We can find Pareto optimal production methods (i.e., minimal resource vectors) by
minimizing

)\Tm =Mx1+-+ )\nxn
over the set P of production vectors, using any A that satisfies A = 0.
Here the vector A has a simple interpretation: A; is the price of resource i. By
minimizing ATz over P we are finding the overall cheapest production method (for
the resource prices \;). As long as the prices are positive, the resulting production
method is guaranteed to be efficient.

These ideas are illustrated in figure 2.27.
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T

x9 T5 T4

T3

labor

Figure 2.27 The production set P, for a product that requires labor and
fuel to produce, is shown shaded. The two dark curves show the efficient
production frontier. The points x1, z2 and x3 are efficient. The points x4
and x5 are not (since in particular, 22 corresponds to a production method
that uses no more fuel, and less labor). The point 1 is also the minimum
cost production method for the price vector A (which is positive). The point
x is efficient, but cannot be found by minimizing the total cost ATz for any
price vector A\ > 0.
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2.1

2.2
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2.4

2.5

2.6

2.7

2.8

2.9

Exercises

Definition of convexity

Let C C R" be a convex set, with z1,...,x2r € C, and let 61,...,0; € R satisfy 6; > 0,
01+ -+ 6, = 1. Show that 6121 + - + Oz € C. (The definition of convexity is that
this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.

Show that a set is convex if and only if its intersection with any line is convex. Show that
a set is affine if and only if its intersection with any line is affine.

Midpoint convexity. A set C' is midpoint convez if whenever two points a, b are in C, the
average or midpoint (a4 b)/2 is in C. Obviously a convex set is midpoint convex. It can
be proved that under mild conditions midpoint convexity implies convexity. As a simple
case, prove that if C' is closed and midpoint convex, then C' is convex.

Show that the convex hull of a set S is the intersection of all convex sets that contain S.
(The same method can be used to show that the conic, or affine, or linear hull of a set S
is the intersection of all conic sets, or affine sets, or subspaces that contain S.)

Examples
What is the distance between two parallel hyperplanes {x € R™ | "z = b1} and {z €
R" | a"z = b2 }?

When does one halfspace contain another? Give conditions under which
{z|a"z<b} C{x|a"z<b}

(where a # 0, @ # 0). Also find the conditions under which the two halfspaces are equal.

Voronoi description of halfspace. Let a and b be distinct points in R™. Show that the set
of all points that are closer (in Euclidean norm) to a than b, i.e., {z | |z —all2 < ||z —b||2},
is a halfspace. Describe it explicitly as an inequality of the form ¢Ta < d. Draw a picture.

Which of the following sets S are polyhedra? If possible, express S in the form S =
{z| Ax Xb, Fx = g}.

(a) S={vyia1 +y2a2| —1<y1 <1, —1<ys <1}, where a1,a2 € R".

b)) S={zeR"|z>=0 1Tz =1, Yo wiai = b, Yo zia? = by}, where
ai,...,an € R and b1,b2 € R.

() S={rcR"™ |z =0, 2Ty <1 for all y with |jy|2 = 1}.
(d S={zeR"|z=0, 2"y <1forallywith >."  |y|=1}.

Voronoi sets and polyhedral decomposition. Let xzo,...,xx € R"™. Consider the set of
points that are closer (in Euclidean norm) to xo than the other x;, i.e.,

V={zeR"||z—xollz <z —zill2, i=1,...,K}.
V' is called the Voronoi region around zo with respect to z1,...,zk.

(a) Show that V is a polyhedron. Express V in the form V = {z | Az < b}.

(b) Conversely, given a polyhedron P with nonempty interior, show how to find zo, ..., zx
so that the polyhedron is the Voronoi region of x¢ with respect to z1,...,zxk.

(c) We can also consider the sets
Vi ={z € R" | [lz — 2]l2 < [lz — @ill2, @ # k}.

The set V}, consists of points in R™ for which the closest point in the set {zo, ..., zx}
is L.
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The sets Vo, ..., Vik give a polyhedral decomposition of R"™. More precisely, the sets
Vi are polyhedra, Uf:o Vi =R" and int V; Nint V; = 0 for i # j, i.e., V; and V}
intersect at most along a boundary.

Suppose that Pi,..., P, are polyhedra such that UZI P, = R", and int P, N
int P; = 0 for i« # j. Can this polyhedral decomposition of R™ be described as
the Voronoi regions generated by an appropriate set of points?

2.10 Solution set of a quadratic inequality. Let C' C R™ be the solution set of a quadratic
inequality,
C={zeR"|z"Az+b"z+¢c<0},

with A € S, be R", and c € R.

(a) Show that C is convex if A > 0.

(b) Show that the intersection of C' and the hyperplane defined by g%z + h = 0 (where

g # 0) is convex if A+ Agg” = 0 for some A € R.

Are the converses of these statements true?

2.11 Hyperbolic sets. Show that the hyperbolic set {x € R2+ | ziz2 > 1} is convex. As a
generalization, show that {# € R} | [[I", s > 1} is convex. Hint. If a,b > 0 and

0 <60 <1, then a’b' =% < fa + (1 — 6)b; see §3.1.9.
2.12 Which of the following sets are convex?

(a) A slab, i.e., a set of the form {z € R" | a < oz < B}.

(b) A rectangle, i.e., a set of the form {x € R" | a; < x; < B4, i =1,...,n}. Arectangle
is sometimes called a hyperrectangle when n > 2.

(c) A wedge, i.e., {x € R™ | alx < b1, afx < ba}.

d) The set of points closer to a given point than a given set, i.e.,
g g
{z |z —zoll2 < [z — yll2 for all y € S}
where S C R".

(e) The set of points closer to one set than another, i.e.,
{z | dist(z, S) < dist(z,T)},
where S, T C R", and
dist(z, S) = inf{|lz — 2|2 | z € S}.

(f) [HUL93, volume 1, page 93] The set {x | x + Sz C S1}, where S1,S2 C R"™ with S

convex.

(g) The set of points whose distance to a does not exceed a fixed fraction 6 of the
distance to b, i.e., the set {z | ||z — a|l2 < 0|z — b||2}. You can assume a # b and
0<6<1.

2.13 Conic hull of outer products. Consider the set of rank-k outer products, defined as
{XXT| X e R"™" rank X = k}. Describe its conic hull in simple terms.

2.14 Ezpanded and restricted sets. Let S C R", and let || - || be a norm on R".

(a) For a > 0 we define S, as {z | dist(z,S) < a}, where dist(z,S) = infycs ||z — ¥y
We refer to S, as S expanded or extended by a. Show that if S is convex, then S,
is convex.

(b) For a > 0 we define S_, = {z | B(z,a) C S}, where B(z, a) is the ball (in the norm
Il - |I), centered at z, with radius a. We refer to S_, as S shrunk or restricted by a,
since S_, consists of all points that are at least a distance a from R™\S. Show that
if S is convex, then S_, is convex.
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2.15

2.16

2.17

2.18

2.19

Some sets of probability distributions. Let x be a real-valued random variable with
prob(z = a;) = ps, i = 1,...,n, where a1 < az < -+ < an. Of course p € R lies
in the standard probability simplex P = {p | 1Tp=1, p> 0}. Which of the following
conditions are convex in p? (That is, for which of the following conditions is the set of
p € P that satisfy the condition convex?)

(a) o < Ef(z) < B, where E f(x) is the expected value of f(z), i.e, Ef(z) =
Yo pif(ai). (The function f: R — R is given.)
prob(z > a) < 6.
E|2?| < oE|z].
Ez’ <a.
Ez? > a.
var(z) < a, where var(z) = E(z — E2)? is the variance of z.
r(z) > a.

va
quartile(z)

(b

(
(d
(
(

e
f

(8
(h

(i

where quartile(z) = inf{3 | prob(z < ) > 0.25}.
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Operations that preserve convexity

Show that if S; and S2 are convex sets in R"H'"7 then so is their partial sum
S={(z,yn+y2) |z €R™, y1, y2 € R",(z,31) € S1, (,y2) € Sa}.

Image of polyhedral sets under perspective function. In this problem we study the image
of hyperplanes, halfspaces, and polyhedra under the perspective function P(z,t) = z/t,
with dom P = R"™ x R4 4. For each of the following sets C, give a simple description of

P(C)={v/t| (v,t) € C, t > 0}.
(a) The polyhedron C = conv{(v1,t1),..., (vk,tx)} where v; € R" and ¢; > 0.
(b) The hyperplane C = {(v,t) | fTv + gt = h} (with f and g not both zero).
)
)

(c) The halfspace C' = {(v,t) | f"v + gt < h} (with f and g not both zero).
(d) The polyhedron C = {(v,t) | Fv+ gt < h}.

Invertible linear-fractional functions. Let f: R™ — R" be the linear-fractional function

f(x) = (Az +b)/(c"z +d), dom f = {z|c"z+d> 0}

A b
Q - |: CT d :|
is nonsingular. Show that f is invertible and that f~' is a linear-fractional mapping.

Give an explicit expression for f~! and its domain in terms of A, b, ¢, and d. Hint. It
may be easier to express f~! in terms of Q.

Suppose the matrix

Linear-fractional functions and conver sets. Let f : R™ — R"™ be the linear-fractional
function

f(z) = (Az +b)/(c"z + d), dom f = {z|c"z+d> 0}
In this problem we study the inverse image of a convex set C under f, i.e.,

f7C) = {z e dom f | f(z) € C}.
For each of the following sets C C R", give a simple description of f~*(C).
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(a) The halfspace C = {y | g"y < h} (with g # 0).

(b) The polyhedron C' = {y | Gy < h}.

(¢) The ellipsoid {y | yT P~y < 1} (where P € S%.).
)

(d) The solution set of a linear matrix inequality, C = {y | y141 + -+ + ynAn <X B},
where A, ..., A,, B € SP.

Separation theorems and supporting hyperplanes

2.20 Strictly positive solution of linear equations. Suppose A € R™*" b€ R™, with b € R(A).
Show that there exists an z satisfying

z > 0, Az =b
if and only if there exists no A with

AN =0, ATx 40, b <o.

Hint. First prove the following fact from linear algebra: ¢’z = d for all = satisfying

Az = b if and only if there is a vector X such that ¢ = ATA, d = bT\.

2.21 The set of separating hyperplanes. Suppose that C' and D are disjoint subsets of R™.
Consider the set of (a,b) € R™"! for which a”x < b for all x € C, and a”2 > b for all
z € D. Show that this set is a convex cone (which is the singleton {0} if there is no
hyperplane that separates C' and D).

2.22 Finish the proof of the separating hyperplane theorem in §2.5.1: Show that a separating
hyperplane exists for two disjoint convex sets C and D. You can use the result proved
in §2.5.1, i.e., that a separating hyperplane exists when there exist points in the two sets
whose distance is equal to the distance between the two sets.

Hint. If C and D are disjoint convex sets, then the set {x —y | 2 € C, y € D} is convex
and does not contain the origin.

2.23 Give an example of two closed convex sets that are disjoint but cannot be strictly sepa-
rated.

2.24 Supporting hyperplanes.

(a) Express the closed convex set {x € R% | z122 > 1} as an intersection of halfspaces.

(b) Let C = {z € R" | ||z]loo < 1}, the £oo-norm unit ball in R™, and let £ be a point
in the boundary of C. Identify the supporting hyperplanes of C' at & explicitly.

2.25 Inner and outer polyhedral approximations. Let C C R™ be a closed convex set, and
suppose that 21, ..., zx are on the boundary of C. Suppose that for each i, a] (x—2z;) = 0
defines a supporting hyperplane for C' at z;, i.e., C C {z | a] (x — x;) < 0}. Consider the
two polyhedra

Pinner = conv{z1,..., Tk}, Pouter = {2 | a;r(x —z;)<0,i=1,...,K}.

Show that Pinner € C' C Pouter- Draw a picture illustrating this.
2.26 Support function. The support function of a set C C R" is defined as

Sc(y) =sup{y = |z € C}.
(We allow Sc(y) to take on the value +00.) Suppose that C' and D are closed convex sets

in R™. Show that C' = D if and only if their support functions are equal.

2.27 Converse supporting hyperplane theorem. Suppose the set C' is closed, has nonempty
interior, and has a supporting hyperplane at every point in its boundary. Show that C' is
convex.
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Convex cones and generalized inequalities

2.28 Positive semidefinite cone for n = 1, 2, 3. Give an explicit description of the positive
semidefinite cone S%, in terms of the matrix coefficients and ordinary inequalities, for
n =1, 2, 3. To describe a general element of S™, for n = 1, 2, 3, use the notation

T X2 xrs3
1L T2
T1, 5 X2 T4 Ts5 .
T2 I3
r3 Ts Te

2.29 Cones in R?. Suppose K C R? is a closed convex cone.

(a) Give a simple description of K in terms of the polar coordinates of its elements
(z = r(cos ¢,sin ¢) with r > 0).

(b) Give a simple description of K*, and draw a plot illustrating the relation between
K and K*.

(¢) When is K pointed?

(d) When is K proper (hence, defines a generalized inequality)? Draw a plot illustrating
what * <g y means when K is proper.

2.30 Properties of generalized inequalities. Prove the properties of (nonstrict and strict) gen-
eralized inequalities listed in §2.4.1.

2.31 Properties of dual cones. Let K™ be the dual cone of a convex cone K, as defined in (2.19).
Prove the following.

(a) K™ is indeed a convex cone.

) K1 C K, implies K5 C K7.

(¢) K™ is closed.

(d) The interior of K* is given by int K* = {y | y"2 > 0 for all z € cl K'}.
) If K has nonempty interior then K* is pointed.

) K™* is the closure of K. (Hence if K is closed, K** = K.)

(g) If the closure of K is pointed then K™ has nonempty interior.

2.32 Find the dual cone of {Az | z = 0}, where A € R™*"™.

2.33 The monotone nonnegative cone. We define the monotone nonnegative cone as
Kny={zeR"|z1>a2> - >z, >0}
i.e., all nonnegative vectors with components sorted in nonincreasing order.

(a) Show that K+ is a proper cone.
(b) Find the dual cone K, . Hint. Use the identity

inyi = (w1 —m2)y1 + (w2 —23)(y1 +y2) + (3 —24) (Y1 +y2 +y3) + - - -
i=1

+ (@n—1—zn) (Y1 + F Yn—1) F 2y + -+ yn).
2.34 The lezicographic cone and ordering. The lexicographic cone is defined as
Kiex ={0}U{z e R" |21 =+ =2, =0, 241 > 0, for some k, 0 < k < n},

i.e., all vectors whose first nonzero coefficient (if any) is positive.

(a) Verify that Kiex is a cone, but not a proper cone.
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(b) We define the lezicographic ordering on R™ as follows: x <jex y if and only if
y — T € Kiex. (Since Kjex is not a proper cone, the lexicographic ordering is not a
generalized inequality.) Show that the lexicographic ordering is a linear ordering:
for any z, y € R", either  <jex ¥ or y <jex . Therefore any set of vectors can be
sorted with respect to the lexicographic cone, which yields the familiar sorting used
in dictionaries.

(c) Find Kj.,.

Copositive matrices. A matrix X € S™ is called copositive if z¥' Xz > 0 for all z > 0.
Verify that the set of copositive matrices is a proper cone. Find its dual cone.

Euclidean distance matrices. Let x1,...,2, € R”*. The matrix D € S™ defined by Di; =
|z — 2|3 is called a Buclidean distance matriz. Tt satisfies some obvious properties such
as D;; = Djs, Dy = 0, D;; > 0, and (from the triangle inequality) Dilk/2 < Dilj/2 + Djl.,éZ.
We now pose the question: When is a matrix D € S™ a Euclidean distance matrix (for
some points in R¥, for some k)? A famous result answers this question: D € S" is a
Euclidean distance matrix if and only if D;; = 0 and 2T Dz < 0 for all  with 17z = 0.
(See §8.3.3.)

Show that the set of Euclidean distance matrices is a convex cone.
Nonnegative polynomials and Hankel LMIs. Let Kpo1 be the set of (coefficients of) non-
negative polynomials of degree 2k on R:

Kool = {x € R2*! | 1 + xat + gt 4+ x2k+1t2k >0 for all t € R}.

(a) Show that Ko is a proper cone.

(b) A basic result states that a polynomial of degree 2k is nonnegative on R if and only
if it can be expressed as the sum of squares of two polynomials of degree k or less.
In other words, x € Ko if and only if the polynomial

p(t) = x1 + xa2t + z3t® + -+ I2k+1t2k
can be expressed as
p(t) = r(t)* + s(1)*
where r and s are polynomials of degree k.
Use this result to show that

2k+1
Kooi=<z€R bt T = E Y,un for some Y € ST‘I
m+n=i+1

In other words, p(t) = x1 + za2t + xat? + -+ m2k+1t2k is nonnegative if and only if
there exists a matrix Y € Si“ such that

1 = Y

T2 = Yo+ Yo

r3 = Y3+ Yoo+ Y3
Tok+1 =  Yeyik+l-

(c) Show that K}, = Khan where

Kuan = {z € R*™ | H(2) = 0}
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and
z1 z2 z3 cee Zk Zk+4+1
z2 23 Z4 cee Zk+1 Zk+2
z3 24 z5 s Zk42 Zk+4
H(z) =
Zk  Zk+1  Rk+2 o Z2k—1 22k
Zk+1 RZk+2 RZk+3 22k 22k+1
(This is the Hankel matriz with coefficients z1, ..., z2k41.)

Let Kumom be the conic hull of the set of all vectors of the form (1,t,t%,...,t%),
where ¢ € R. Show that y € Kmom if and only if 41 > 0 and

y:yl(l,Eu,Eu2,...,Eu2k)

for some random variable u. In other words, the elements of Kmom are nonnegative
multiples of the moment vectors of all possible distributions on R. Show that Ky =
K;Om'

Combining the results of (¢) and (d), conclude that Khan = ¢l Kmom-

As an example illustrating the relation between Kmom and Khan, take k = 2 and
z = (1,0,0,0,1). Show that z € Khan, 2 € Kmom. Find an explicit sequence of
points in Kmom which converge to z.

2.38 [Roc70, pages 15, 61] Convex cones constructed from sets.

(a)

(b)

(c)

The barrier cone of a set C is defined as the set of all vectors y such that y'z is
bounded above over x € C. In other words, a nonzero vector y is in the barrier cone
if and only if it is the normal vector of a halfspace {z | y"2z < a} that contains C.
Verify that the barrier cone is a convex cone (with no assumptions on C').

The recession cone (also called asymptotic cone) of a set C' is defined as the set of
all vectors y such that for each x € C, x —ty € C for all ¢t > 0. Show that the
recession cone of a convex set is a convex cone. Show that if C' is nonempty, closed,
and convex, then the recession cone of C is the dual of the barrier cone.

The normal cone of a set C' at a boundary point x¢ is the set of all vectors y such
that yT (2 — z0) < 0 for all x € C (i.e., the set of vectors that define a supporting
hyperplane to C' at zo). Show that the normal cone is a convex cone (with no
assumptions on C). Give a simple description of the normal cone of a polyhedron
{z | Az < b} at a point in its boundary.

2.39 Separation of cones. Let K and K be two convex cones whose interiors are nonempty and
disjoint. Show that there is a nonzero y such that y € K*, —y € K*.
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Chapter 3

Convex functions

Basic properties and examples
Definition

A function f : R" — R is convezr if dom f is a convex set and if for all x,
y € dom f, and 6 with 0 < 0 < 1, we have

Sz + (1 —0)y) <O0f(x)+(1—-0)f(y) (3.1)

Geometrically, this inequality means that the line segment between (z, f(z)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convez if strict inequality holds in (3.1) whenever z # y
and 0 < 0 < 1. We say f is concave if —f is convex, and strictly concave if —f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all z € dom f and

(v, f(y))
(z, f(x))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.
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all v, the function g(t) = f(x +tv) is convex (on its domain, {t | z+tv € dom f}).
This property is very useful, since it allows us to check whether a function is convex
by restricting it to a line.

The analysis of convex functions is a well developed field, which we will not
pursue in any depth. One simple result, for example, is that a convex function is
continuous on the relative interior of its domain; it can have discontinuities only
on its relative boundary.

Extended-value extensions

It is often convenient to extend a convex function to all of R™ by defining its value
to be oo outside its domain. If f is convex we define its extended-value extension
f:R" = RU{oo} by

=y | fle) zedomf
f(x)—{ oo z¢domf.

The extension f is defined on all R™, and takes values in R U {oo}. We can recover
the domain of the original function f from the extension f as dom f = {z | f(z) <
oo}

The extension can simplify notation, since we do not need to explicitly describe
the domain, or add the qualifier ‘for all z € dom f’ every time we refer to f(x).
Consider, for example, the basic defining inequality (3.1). In terms of the extension
f, we can express it as: for 0 < 6 < 1,

fl0z+(1=0)y) <0f(x)+ (1-60)f(y)

for any x and y. (For # = 0 or § = 1 the inequality always holds.) Of course here we
must interpret the inequality using extended arithmetic and ordering. For x and y
both in dom f, this inequality coincides with (3.1); if either is outside dom f, then
the righthand side is oo, and the inequality therefore holds. As another example
of this notational device, suppose f1 and f5 are two convex functions on R"™. The
pointwise sum f = f; + f3 is the function with domain dom f = dom f; Ndom f,
with f(z) = fi(z) + f2(z) for any = € dom f. Using extended-value extensions we
can simply say that for any z, f(z) = fi(z) + fo(z). In this equation the domain
of f has been automatically defined as dom f = dom f; Ndom f5, since f(z) = 0o
whenever x ¢ dom f; or x ¢ dom f5. In this example we are relying on extended
arithmetic to automatically define the domain.

In this book we will use the same symbol to denote a convex function and its
extension, whenever there is no harm from the ambiguity. This is the same as
assuming that all convex functions are implicitly extended, i.e., are defined as oo
outside their domains.

Example 3.1 Indicator function of a convex set. Let C' C R"™ be a convex set, and
consider the (convex) function I¢ with domain C and I¢(z) = 0 for all z € C. In
other words, the function is identically zero on the set C'. Its extended-value extension



3.13

3.1 Basic properties and examples

69

f(y)
f@)+ V@) (y— )

(z, f(z))

Figure 3.2 If f is convex and differentiable, then f(z)+V f(z)" (y—x) < f(y)
for all z, y € dom f.

is given by

e ={ %, 16

The convex function I¢ is called the indicator function of the set C.

We can play several notational tricks with the indicator function Ic. For example
the problem of minimizing a function f (defined on all of R", say) on the set C is the
same as minimizing the function f + I over all of R™. Indeed, the function f + I¢
is (by our convention) f restricted to the set C.

In a similar way we can extend a concave function by defining it to be —oo
outside its domain.

First-order conditions

Suppose f is differentiable (i.e., its gradient V[ exists at each point in dom f,
which is open). Then f is convex if and only if dom f is convex and

fy) = f(2) + V(@) (y - ) (3.2)

holds for all x, y € dom f. This inequality is illustrated in figure 3.2.

The affine function of y given by f(x)+V f(z)T (y—x) is, of course, the first-order
Taylor approximation of f near x. The inequality (3.2) states that for a convex
function, the first-order Taylor approximation is in fact a global underestimator of
the function. Conversely, if the first-order Taylor approximation of a function is
always a global underestimator of the function, then the function is convex.

The inequality (3.2) shows that from local information about a convex function
(i.e., its value and derivative at a point) we can derive global information (i.e., a
global underestimator of it). This is perhaps the most important property of convex
functions, and explains some of the remarkable properties of convex functions and
convex optimization problems. As one simple example, the inequality (3.2) shows
that if Vf(z) = 0, then for all y € dom f, f(y) > f(z), i.e., x is a global minimizer
of the function f.
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Strict convexity can also be characterized by a first-order condition: f is strictly
convex if and only if dom f is convex and for z, y € dom f, = # y, we have

f) > f@)+ V@) (y—2). (3.3)

For concave functions we have the corresponding characterization: f is concave
if and only if dom f is convex and

fy) < fl2) + V(@) (y - )

for all z, y € dom f.

Proof of first-order convexity condition

To prove (3.2), we first consider the case n = 1: We show that a differentiable
function f: R — R is convex if and only if

f) =z f@)+ f(2)(y — o) (34)

for all x and y in dom f.

Assume first that f is convex and z, y € dom f. Since dom f is convex (i.e.,
an interval), we conclude that for all 0 < ¢t < 1, z 4+ t(y — ) € dom f, and by
convexity of f,

flat+tly—2) <1 =0)f(z) +tf(y)
If we divide both sides by ¢, we obtain

fx+ty—x)) = fz)
t )

fly) > f(x) +

and taking the limit as ¢t — 0 yields (3.4).

To show sufficiency, assume the function satisfies (3.4) for all z and y in dom f
(which is an interval). Choose any x # y, and 0 < § < 1, and let z = 0z + (1 — 6)y.
Applying (3.4) twice yields

f@) = f()+ f ()@ —2),  fly) = f2)+ f(2)y—2).
Multiplying the first inequality by 6, the second by 1 — 6, and adding them yields

0f(x) + (1 =0)f(y) = f(2),

which proves that f is convex.

Now we can prove the general case, with f : R — R. Let z, y € R" and
consider f restricted to the line passing through them, i.e., the function defined by
g(t) = flty + (1 = t)x), 50 ¢'(t) = Vf(ty + (1 = t)a)" (y — x).

First assume f is convex, which implies g is convex, so by the argument above
we have g(1) > ¢g(0) + ¢’(0), which means

fly) = fz) + V@) (y - x).

Now assume that this inequality holds for any x and y, so if ty + (1 — t)z € dom f
and ty + (1 — t)z € dom f, we have

flty+ (1 =t)z) > flly+ (1 —Ba) + Vf(fy+ (1 —Ha)" (y — x)(t — 1),

i.e., g(t) > g(t) + ¢’ (t)(t — t). We have seen that this implies that g is convex.
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Second-order conditions

We now assume that f is twice differentiable, that is, its Hessian or second deriva-
tive V2f exists at each point in dom f, which is open. Then f is convex if and
only if dom f is convex and its Hessian is positive semidefinite: for all x € dom f,

V2 f(z) = 0.

For a function on R, this reduces to the simple condition f”(z) > 0 (and dom f
convex, i.e., an interval), which means that the derivative is nondecreasing. The
condition V2 f(x) = 0 can be interpreted geometrically as the requirement that the
graph of the function have positive (upward) curvature at . We leave the proof
of the second-order condition as an exercise (exercise 3.8).

Similarly, f is concave if and only if dom f is convex and V2f(z) < 0 for
all z € dom f. Strict convexity can be partially characterized by second-order
conditions. If V2f(x) = 0 for all x € dom f, then f is strictly convex. The
converse, however, is not true: for example, the function f : R — R given by
f(x) = x* is strictly convex but has zero second derivative at o = 0.

Example 3.2 Quadratic functions. Consider the quadratic function f : R" — R, with
dom f = R", given by

fl@) = (1/2)2" Pz +q"x +,
with P € 8", ¢ € R™, and r € R.. Since V?f(x) = P for all z, f is convex if and only
if P > 0 (and concave if and only if P < 0).

For quadratic functions, strict convexity is easily characterized: f is strictly convex
if and only if P > 0 (and strictly concave if and only if P < 0).

Remark 3.1 The separate requirement that dom f be convex cannot be dropped from
the first- or second-order characterizations of convexity and concavity. For example,
the function f(x) = 1/22, with dom f = {z € R | = # 0}, satisfies f’(z) > 0 for all
x € dom f, but is not a convex function.

Examples

We have already mentioned that all linear and affine functions are convex (and
concave), and have described the convex and concave quadratic functions. In this
section we give a few more examples of convex and concave functions. We start
with some functions on R, with variable x.

axr

e Ezxponential. e®* is convex on R, for any a € R.
e Powers. z%is convex on R4 whena > 1ora < 0, and concave for 0 < a < 1.
e Powers of absolute value. |x|P, for p > 1, is convex on R.

e Logarithm. logz is concave on R ;.
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flx,y)

Figure 3.3 Graph of f(z,y) = 2%/y.

e Negative entropy. xlogz (either on R4, or on Ry, defined as 0 for = 0)
is convex.

Convexity or concavity of these examples can be shown by verifying the ba-
sic inequality (3.1), or by checking that the second derivative is nonnegative or
nonpositive. For example, with f(z) = zlogx we have

fll@)=logz+1,  f'(z)=1/x,

so that f”(z) > 0 for x > 0. This shows that the negative entropy function is
(strictly) convex.
We now give a few interesting examples of functions on R".

e Norms. Every norm on R" is convex.
e Mazx function. f(x) = max{xi,...,x,} is convex on R".
e Quadratic-over-linear function. The function f(z,y) = 22 /y, with
dom f =R xRy, = {(z,y) e R* |y > 0},
is convex (figure 3.3).
e Log-sum-exp. The function f(z) = log(e™ + -+ e®) is convex on R".

This function can be interpreted as a differentiable (in fact, analytic) approx-
imation of the max function, since

max{z1,...,2,} < f(x) < max{z1,...,z,} + logn

for all z. (The second inequality is tight when all components of x are equal.)
Figure 3.4 shows f for n = 2.
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Figure 3.4 Graph of f(z,y) = log(e” + €Y).

e Geometric mean. The geometric mean f(z) = ([];, xi)l/n is concave on
dom f =R",.
e Log-determinant. The function f(X) = logdet X is concave on dom f =
Sh..
Convexity (or concavity) of these examples can be verified in several ways,
such as directly verifying the inequality (3.1), verifying that the Hessian is positive

semidefinite, or restricting the function to an arbitrary line and verifying convexity
of the resulting function of one variable.

Norms. If f: R"™ — R is a norm, and 0 < 6 < 1, then

f(0z + (1= 0)y) < f(0x) + f((1=0)y) = 0f(z)+ (1= 0)f(y).

The inequality follows from the triangle inequality, and the equality follows from
homogeneity of a norm.

Max function. The function f(z) = max; x; satisfies, for 0 <0 <1,
[0z + (1 —=0)y) = max(fz; + (1—0)y;)
fmaxz; + (1 — ) maxy;

= 0f(x)+ (1 =0)f(y).

IN

Quadratic-over-linear function. To show that the quadratic-over-linear function
f(x,y) = 22 /y is convex, we note that (for y > 0),

2 2 2 T
vzf(x,y)ys{f’w ;@y]yg[_ny_yx} = 0.
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Log-sum-exp. The Hessian of the log-sum-exp function is

VA f(z) =

i72)? (172) diag(z) — 22"),

where z = (e*1,...,e%"). To verify that V2f(z) = 0 we must show that for all v,
vIV2f(z)v >0, d.e.,

n n n 2
2 1 2
o'V f(z)v= W (Z; Zl> (201 Z7,> - (2 vizi> > 0.

But this follows from the Cauchy-Schwarz inequality (a”a)(b?b) > (aTb)? applied
to the vectors with components a; = v;4/2;, b; = /2.

Geometric mean. In a similar way we can show that the geometric mean f(z) =
(IT, xi)l/n is concave on dom f = R | . Its Hessian V?f(x) is given by

8*f(z) I, =)™ 2@ (1 =)"
oz —(n—1) n?zy Oxpdz;  nlapw fork#1,

and can be expressed as

n 1/n
2 __H¢:133i/ . 2 2y _ T
V() = =T (ndiag(1/a?, ., 1/43) — qd”)

where ¢; = 1/z;. We must show that V2f(z) < 0, i.e., that

n 1/n n n 2
T2 _ [[im, @ 2.2 o
v'V f(a:)v——in2 n E_l vifxi — (E vl/x,> <0

=1

for all v. Again this follows from the Cauchy-Schwarz inequality (aa)(bTb) >
(aT'b)?, applied to the vectors a = 1 and b; = v;/x;.

Log-determinant. For the function f(X) = logdet X, we can verify concavity by
considering an arbitrary line, given by X = Z + tV, where Z, V € S". We define
g(t) = f(Z +1tV), and restrict g to the interval of values of ¢ for which Z 4+ ¢V > 0.
Without loss of generality, we can assume that ¢ = 0 is inside this interval, i.e.,
Z » 0. We have

g(t) = logdet(Z +tV)
= logdet(ZV2(I +tz= Y2V Zz=Y/%)7'/?)
= ) log(1+1t\;) +logdet Z
i=1
where A1, ..., \, are the eigenvalues of Z~1/2V Z~1/2, Therefore we have

! o )‘i " _ - )‘12
g(t)’zuui’ 91 = Z(1+t/\i)2'

=1 i=1

Since ¢”(t) < 0, we conclude that f is concave.



3.1.6

3.1.7

3.1 Basic properties and examples 75

Sublevel sets

The a-sublevel set of a function f : R"™ — R is defined as
Co={zedomf| f(x) <a}.

Sublevel sets of a convex function are convex, for any value of a. The proof is
immediate from the definition of convexity: if z, y € C,, then f(x) < a and
fly) <a,and so f(lx+ (1 —0)y) < afor 0 <60 <1, and hence z+ (1 —0)y € C,.

The converse is not true: a function can have all its sublevel sets convex, but
not be a convex function. For example, f(z) = —e® is not convex on R (indeed, it
is strictly concave) but all its sublevel sets are convex.

If f is concave, then its a-superlevel set, given by {z € dom f | f(x) > a}, is a
convex set. The sublevel set property is often a good way to establish convexity of
a set, by expressing it as a sublevel set of a convex function, or as the superlevel
set of a concave function.

Example 3.3 The geometric and arithmetic means of x € R} are, respectively,

1
G = 2 9 = - 2
i=1 i=1
(where we take 0Y/™ = 0 in our definition of G). The arithmetic-geometric mean
inequality states that G(z) < A(z).
Suppose 0 < a < 1, and consider the set
{z € R} | G(2) > aA@)},

i.e., the set of vectors with geometric mean at least as large as a factor « times the
arithmetic mean. This set is convex, since it is the 0-superlevel set of the function
G(z) — aA(z), which is concave. In fact, the set is positively homogeneous, so it is a
convex cone.

Epigraph

The graph of a function f : R™ — R is defined as

{(z, f(2)) | € dom f},
which is a subset of R, The epigraph of a function f : R" — R is defined as

epi f = {(z,1) | z € dom f, f(z) <t},

which is a subset of R"™'. (‘Epi’ means ‘above’ so epigraph means ‘above the
graph’.) The definition is illustrated in figure 3.5.

The link between convex sets and convex functions is via the epigraph: A
function is convex if and only if its epigraph is a convex set. A function is concave
if and only if its hypograph, defined as

hypo f = {(z,t) [ t < f(2)},

is a convex set.
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epi f

Figure 3.5 Epigraph of a function f, shown shaded. The lower boundary,
shown darker, is the graph of f.

Example 3.4 Matriz fractional function. The function f: R"™ x S™ — R, defined as
f,Y)=2"Y "z

is convex on dom f = R" xS} ;. (This generalizes the quadratic-over-linear function
f(z,y) = 2*/y, with dom f = R x Ry,.)

One easy way to establish convexity of f is via its epigraph:

epif = {(z,V,t)|Y =0, 2" Y 'z <t}
Y =z

using the Schur complement condition for positive semidefiniteness of a block matrix
(see §A.5.5). The last condition is a linear matrix inequality in (z,Y,t), and therefore
epi f is convex.

>O7Y>0},

For the special case n = 1, the matrix fractional function reduces to the quadratic-
over-linear function x?/y, and the associated LMI representation is

Yy X
—
[m t}_O, y >0

(the graph of which is shown in figure 3.3).

Many results for convex functions can be proved (or interpreted) geometrically

using epigraphs, and applying results for convex sets. As an example, consider the
first-order condition for convexity:

fy) = f(z) + V@) (y — ),

where f is convex and z, y € dom f. We can interpret this basic inequality
geometrically in terms of epi f. If (y,t) € epi f, then

t>fly) > f@)+ Vi) (y— ).
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(Vf(x), -1)

Figure 3.6 For a differentiable convex function f, the vector (Vf(z),—1)
defines a supporting hyperplane to the epigraph of f at x.

We can express this as:

ocoms = [T (2] )0

This means that the hyperplane defined by (Vf(x),—1) supports epi f at the
boundary point (z, f(z)); see figure 3.6.

Jensen’s inequality and extensions

The basic inequality (3.1), i.e.,
fOx+ (1 —0)y) <O0f(x)+(1-0)f(y),

is sometimes called Jensen’s inequality. It is easily extended to convex combinations
of more than two points: If f is convex, x1,...,2; € dom f, and #y,...,0, > 0
with 61 +--- + 0, = 1, then

flbrzy 4+ -+ 0pzr) <01 f(x1) + -+ O f(zp).

As in the case of convex sets, the inequality extends to infinite sums, integrals, and
expected values. For example, if p(z) > 0 on S C dom f, fs p(z) de =1, then

1( [ oo as) < [ o) as

provided the integrals exist. In the most general case we can take any probability
measure with support in dom f. If x is a random variable such that z € dom f
with probability one, and f is convex, then we have

f(Ez) <Ef(z), (3.5)

provided the expectations exist. We can recover the basic inequality (3.1) from
this general form, by taking the random variable x to have support {x1, x5}, with
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prob(z = z1) = 0, prob(x = z3) = 1 — #. Thus the inequality (3.5) characterizes
convexity: If f is not convex, there is a random variable z, with + € dom f with
probability one, such that f(Ex) > E f(x).

All of these inequalities are now called Jensen’s inequality, even though the
inequality studied by Jensen was the very simple one

f (w;ry> < f(ff);rf(y)

Remark 3.2 We can interpret (3.5) as follows. Suppose z € dom f C R"™ and z is
any zero mean random vector in R"™. Then we have

Ef(z+2)> f(x).

Thus, randomization or dithering (i.e., adding a zero mean random vector to the
argument) cannot decrease the value of a convex function on average.

Inequalities

Many famous inequalities can be derived by applying Jensen’s inequality to some
appropriate convex function. (Indeed, convexity and Jensen’s inequality can be
made the foundation of a theory of inequalities.) As a simple example, consider
the arithmetic-geometric mean inequality:

Vab < (a+b)/2 (3.6)
for a,b > 0. The function — log z is convex; Jensen’s inequality with § = 1/2 yields

b —1 —logb
—log(a;— )S oga2 ogb

Taking the exponential of both sides yields (3.6).
As a less trivial example we prove Holder’s inequality: for p > 1, 1/p+1/q =1,

and z, y € R",
n n 1/? n 1/q
inyi < <Z|$z|p> (Zhﬁq) :
i=1 i=1 i=1

By convexity of —log z, and Jensen’s inequality with general 8, we obtain the more
general arithmetic-geometric mean inequality

a’bt =% < fa+ (1 -0,
valid for a, b > 0 and 0 < 6§ < 1. Applying this with

| [P o Jwl®

JR D b= ——
Z:;l:l |$]|p7 Z;L::l |y.]|q7

1/p 1/q
|z [P lyil < |z;]? 4 |yi|?
n n f— n n .
Zj:l |z |P Zj:l ly;[4 ij:1 | ;[P qzj:l |y

Summing over ¢ then yields Hélder’s inequality.

0=1/p,

a =

yields
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Operations that preserve convexity

In this section we describe some operations that preserve convexity or concavity
of functions, or allow us to construct new convex and concave functions. We start
with some simple operations such as addition, scaling, and pointwise supremum,
and then describe some more sophisticated operations (some of which include the
simple operations as special cases).

Nonnegative weighted sums

Evidently if f is a convex function and « > 0, then the function af is convex.
If f1 and f5 are both convex functions, then so is their sum f; + fo. Combining
nonnegative scaling and addition, we see that the set of convex functions is itself a
convex cone: a nonnegative weighted sum of convex functions,

f:w1f1+"'+wmfma

is convex. Similarly, a nonnegative weighted sum of concave functions is concave. A
nonnegative, nonzero weighted sum of strictly convex (concave) functions is strictly
convex (concave).

These properties extend to infinite sums and integrals. For example if f(z,y)
is convex in z for each y € A, and w(y) > 0 for each y € A, then the function g
defined as

(@) = [ wl)fa.) dy
A
is convex in x (provided the integral exists).
The fact that convexity is preserved under nonnegative scaling and addition is

easily verified directly, or can be seen in terms of the associated epigraphs. For
example, if w > 0 and f is convex, we have

epi(wf) = { é 3} }epif,

which is convex because the image of a convex set under a linear mapping is convex.

Composition with an affine mapping
Suppose f: R" - R, A € R""™, and b € R". Define g: R™ — R by
9(z) = f(Az + ),

with domg = {x | Az + b € dom f}. Then if f is convex, so is g; if f is concave,
so is g.
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Pointwise maximum and supremum

If f1 and fy are convex functions then their pointwise mazximum f, defined by

f(x) = max{ fi(x), fo(2)},

with dom f = dom f; Ndom f5, is also convex. This property is easily verified: if
0<6<1andz, ye€dom/f, then

[0z +(1—=0)y) = max{fi(6z+ (1-0)y), f2(fz + (1 -0)y)}
max{0f1(z) + (1 - 0) f1(y),0f2(z) + (1 = 0) f2(y) }
0 max{fi(z), f2(z)} + (1 — 6) max{f1(y), f2(y)}
0f(z)+(1-0)f(y),

which establishes convexity of f. It is easily shown that if fi,..., f, are convex,
then their pointwise maximum

f(CU) = max{fl(m)v .- 7fm(x)}

IA A

is also convex.

Example 3.5 Piecewise-linear functions. The function
f(z) =max{al @ +b1,...,alz+ by}

defines a piecewise-linear (or really, affine) function (with L or fewer regions). It is
convex since it is the pointwise maximum of affine functions.

The converse can also be shown: any piecewise-linear convex function with L or fewer
regions can be expressed in this form. (See exercise 3.29.)

Example 3.6 Sum of r largest components. For x € R™ we denote by x[; the ith
largest component of z, i.e.,

Ty 2 T[] = 0 2 Bp)

are the components of z sorted in nonincreasing order. Then the function

T

flz) = ch[ilv

i=1

i.e., the sum of the r largest elements of x, is a convex function. This can be seen by
writing it as

f(z):me:max{:ci1+-~~+:cir\1§i1<i2<~~-<i,«§n},
i=1

i.e., the maximum of all possible sums of r different components of x. Since it is the
pointwise maximum of n!/(r!(n — r)!) linear functions, it is convex.

As an extension it can be shown that the function 22:1 w;[;) is convex, provided
w1 > w2 > -+ > wyr > 0. (See exercise 3.19.)
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The pointwise maximum property extends to the pointwise supremum over an
infinite set of convex functions. If for each y € A, f(x,y) is convex in z, then the
function g, defined as

g(x) = sup f(x,y) (3.7)
yeA

is convex in . Here the domain of g is

domg={z|(z,y) edom f for all y € A, sup f(z,y) < co}.
yeA

Similarly, the pointwise infimum of a set of concave functions is a concave function.
In terms of epigraphs, the pointwise supremum of functions corresponds to the
intersection of epigraphs: with f, g, and A as defined in (3.7), we have

epig= [ epif(-y).
ycA

Thus, the result follows from the fact that the intersection of a family of convex
sets is convex.

Example 3.7 Support function of a set. Let C C R", with C # (). The support
function Sc associated with the set C' is defined as

Sc(z) =sup{e"y | y € C}
(and, naturally, dom S¢ = {z | sup ¢ Ty < oo}).

For each y € C, 2Ty is a linear function of x, so S is the pointwise supremum of a
family of linear functions, hence convex.

Example 3.8 Distance to farthest point of a set. Let C C R". The distance (in any
norm) to the farthest point of C,

f(x) = sup |z —yl,
yeC

is convex. To see this, note that for any y, the function ||z — y|| is convex in z. Since
f is the pointwise supremum of a family of convex functions (indexed by y € C), it
is a convex function of z.

Example 3.9 Least-squares cost as a function of weights. Let a1,...,a, € R™. In a
weighted least-squares problem we minimize the objective function Z;;l wi(aZT:r -
b;)? over € R™. We refer to w; as weights, and allow negative w; (which opens the
possibility that the objective function is unbounded below).

We define the (optimal) weighted least-squares cost as

g(w) = inf Z wial © —b;)?,
i=1

domg = {w

with domain

infz wi(a;fpa: — bi)2 > —oo} .
i=1
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Since g is the infimum of a family of linear functions of w (indexed by = € R™), it is
a concave function of w.

We can derive an explicit expression for g, at least on part of its domain. Let

W = diag(w), the diagonal matrix with elements w1, ...,w,, and let A € R"*™
have rows a; , so we have

g(w) = inf(Az — b)) " W(Az — b) = inf(z” AT W Az — 206" W Az + b" Wb).

From this we see that if ATW A ¥ 0, the quadratic function is unbounded below
in z, so g(w) = —o0, i.e, w ¢ domg. We can give a simple expression for g
when ATW A > 0 (which defines a strict linear matrix inequality), by analytically
minimizing the quadratic function:

gw) = b"Wb—b"WAATWA) T ATWD

-1

n n n

_ 2 2,2 T T

= w;b; — w; bja; w;ia;a; a;.
i=1 i=1 j=1

Concavity of g from this expression is not immediately obvious (but does follow, for
example, from convexity of the matrix fractional function; see example 3.4).

Example 3.10 Mazimum eigenvalue of a symmetric matriz. The function f(X) =
Amax(X), with dom f = S™, is convex. To see this, we express f as

F(X) =sup{y" Xy | [lyll2 = 1},

i.e., as the pointwise supremum of a family of linear functions of X (i.e., y* Xy)
indexed by y € R™.

Example 3.11 Norm of a matriz. Consider f(X) = || X||2 with dom f = RP*,
where || - ||2 denotes the spectral norm or maximum singular value. Convexity of f
follows from

F(X) = sup{u’ Xv [ |Jull2 = 1, [Jo]l2 = 1},

which shows it is the pointwise supremum of a family of linear functions of X.

As a generalization suppose || - ||« and || - ||s are norms on R? and R?, respectively.
The induced norm of a matrix X € RP*? is defined as
Xv
1X oy = sup 120le
vt vl

(This reduces to the spectral norm when both norms are Euclidean.) The induced
norm can be expressed as

[ Xl[ap = sup{[[Xvlla|[lv]ls =1}
= sup{u’ Xv | [lullax =1, [[o]ly = 1},
where || - ||« is the dual norm of || - ||, and we use the fact that

T
”'ZH‘Z = sup{u z ‘ ”uHa* = 1}

Since we have expressed || X ||4,» as a supremum of linear functions of X, it is a convex
function.
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Representation as pointwise supremum of affine functions

The examples above illustrate a good method for establishing convexity of a func-
tion: by expressing it as the pointwise supremum of a family of affine functions.
Except for a technical condition, a converse holds: almost every convex function
can be expressed as the pointwise supremum of a family of affine functions. For
example, if f: R" — R is convex, with dom f = R", then we have

f(x) =sup{g(x) | g affine, g(z) < f(z) for all z}.

In other words, f is the pointwise supremum of the set of all affine global under-
estimators of it. We give the proof of this result below, and leave the case where
dom f # R™ as an exercise (exercise 3.28).

Suppose [ is convex with dom f = R". The inequality

f(z) > sup{g(z) | g affine, g(z) < f(z) for all z}

is clear, since if g is any affine underestimator of f, we have g(z) < f(z). To
establish equality, we will show that for each € R", there is an affine function g,
which is a global underestimator of f, and satisfies g(x) = f(x).

The epigraph of f is, of course, a convex set. Hence we can find a supporting
hyperplane to it at (x, f(z)), i.e., a € R™ and b € R with (a,b) # 0 and

T
i [ Ze] =0
for all (z,t) € epi f. This means that
a’(z —2) +b(f(x) = f(2) —5) <0 (3.8)

for all z € dom f = R" and all s > 0 (since (z,t) € epi f means t = f(z) + s for
some s > 0). For the inequality (3.8) to hold for all s > 0, we must have b > 0.
If b = 0, then the inequality (3.8) reduces to a®(x — 2) < 0 for all z € R", which
implies @ = 0 and contradicts (a,b) # 0. We conclude that b > 0, i.e., that the
supporting hyperplane is not vertical.

Using the fact that b > 0 we rewrite (3.8) for s =0 as

9(2) = f(2) + (a/b)" (z — 2) < f(2)

for all z. The function g is an affine underestimator of f, and satisfies g(z) = f(x).

Composition

In this section we examine conditions on h : R¥ — R and g:R" — R” that
guarantee convexity or concavity of their composition f = hog: R" — R, defined
by

f(z) = h(g(x)), dom f = {z € domy | g(x) € domh}.
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Scalar composition

We first consider the case k =1, s0 h : R = R and g : R® — R. We can restrict
ourselves to the case n = 1 (since convexity is determined by the behavior of a
function on arbitrary lines that intersect its domain).

To discover the composition rules, we start by assuming that h and g are twice
differentiable, with dom g = domh = R.. In this case, convexity of f reduces to
f” > 0 (meaning, f”(x) >0 for all x € R).

The second derivative of the composition function f = ho g is given by

f'(x) = h"(g(x))g' (2)* + I (9(2))g" (). (3.9)

Now suppose, for example, that g is convex (so ¢’ > 0) and h is convex and
nondecreasing (so h” > 0 and A’ > 0). It follows from (3.9) that " >0, i.e., f is
convex. In a similar way, the expression (3.9) gives the results:

f is convex if h is convex and nondecreasing, and g is convex,

f is convex if h is convex and nonincreasing, and g is concave, (3.10)
f is concave if h is concave and nondecreasing, and g is concave,

f is concave if h is concave and nonincreasing, and g is convex.

These statements are valid when the functions g and h are twice differentiable and
have domains that are all of R. It turns out that very similar composition rules
hold in the general case n > 1, without assuming differentiability of A and g, or
that domg = R" and domh = R:

f is convex if h is convex, h is nondecreasing, and ¢ is convex,

f is convex if h is convex, h is nonincreasing, and g is concave, (3.11)
f is concave if h is concave, h is nondecreasing, and g is concave,

f is concave if h is concave, h is nonincreasing, and g is convex.

Here h denotes the extended-value extension of the function h, which assigns the
value co (—00) to points not in dom h for h convex (concave). The only difference
between these results, and the results in (3.10), is that we require that the extended-
value extension function h be nonincreasing or nondecreasing, on all of R.

To understand what this means, suppose h is convex, so h takes on the value oo
outside dom h. To say that h is nondecreasing means that for any x, y € R, with
x <y, we have h(z) < h(y). In particular, this means that if y € dom h, then x €
dom h. In other words, the domain of h extends infinitely in the negative direction;
it is either R, or an interval of the form (—o0,a) or (—oo,a]. In a similar way, to
say that h is convex and h is nonincreasing means that h is nonincreasing and
dom h extends infinitely in the positive direction. This is illustrated in figure 3.7.

Example 3.12 Some simple examples will illustrate the conditions on h that appear
in the composition theorems.

e The function h(z) = logz, with domh = Ry, is concave and satisfies h
nondecreasing.
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epi f epi f

0 1 0 1
x x

Figure 3.7 Left. The function z?, with domain R, is convex and nonde-
creasing on its domain, but its extended-value extension is not nondecreas-
ing. Right. The function max{z,0}?, with domain R, is convex, and its
extended-value extension is nondecreasing.

e The function h(z) = z'/?, with domh = Ry, is concave and satisfies the
condition h nondecreasing.

e The function h(z) = 2%/? with domh = Ry, is convex but does not satisfy the
condition h nondecreasing. For example, we have h(—1) = oo, but h(1) = 1.

e The function h(z) = /2 for « > 0, and h(x) = 0 for z < 0, with domh =R,
is convex and does satisfy the condition h nondecreasing.

The composition results (3.11) can be proved directly, without assuming dif-
ferentiability, or using the formula (3.9). As an example, we will prove the fol-
lowing composition theorem: if g is convex, h is convex, and h is nondecreasing,
then f = ho g is convex. Assume that z, y € dom f, and 0 < 6 < 1. Since
x, y € dom f, we have that 2, y € dom g and g(x), ¢g(y) € domh. Since dom g
is convex, we conclude that 0z + (1 — )y € dom g, and from convexity of g, we
have

g0 + (1 0)y) < 0g(x) + (1 — O)g(y). (3.12)

Since g(z), g(y) € domh, we conclude that Og(x) + (1 — 0)g(y) € domh, i.e.,
the righthand side of (3.12) is in domh. Now we use the assumption that h
is nondecreasing, which means that its domain extends infinitely in the negative
direction. Since the righthand side of (3.12) is in dom h, we conclude that the
lefthand side, i.e., g(8x+(1—0)y) € dom h. This means that 0z+(1—0)y € dom f.
At this point, we have shown that dom f is convex.

Now using the fact that his nondecreasing and the inequality (3.12), we get

h(g(0x + (1 = 0)y)) < h(Og(x) + (1 — 0)g(y)). (3.13)

From convexity of h, we have

h(0g(z) + (1 —0)g(y)) < 0h(g(x)) + (1 — O)h(g(y))- (3.14)
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Putting (3.13) and (3.14) together, we have

h(g(0z + (1 = 0)y)) < Oh(g(z)) + (1 = 0)h(g(y)).

which proves the composition theorem.

Example 3.13 Simple composition results.

e If g is convex then exp g(z) is convex.

e If g is concave and positive, then log g(x) is concave.

e If g is concave and positive, then 1/g(x) is convex.

e If g is convex and nonnegative and p > 1, then g(x)? is convex.

e If g is convex then —log(—g(z)) is convex on {z | g(z) < 0}.

Remark 3.3 The requirement that monotonicity hold for the extended-value extension
h, and not just the function h, cannot be removed. For example, consider the function
g(z) = 2%, with domg = R, and h(z) = 0, with domh = [1,2]. Here g is convex,
and h is convex and nondecreasing. But the function f = h o g, given by

f(z) =0, dom f = [f\/i, —-1] U [1,\/5],

is not convex, since its domain is not convex. Here, of course, the function h is not
nondecreasing.

Vector composition

We now turn to the more complicated case when k > 1. Suppose

f(@) = h(g(x)) = h(g1(z), ..., gr(x)),

withh: R¥ = R, ¢; : R" — R. Again without loss of generality we can assume n =
1. Asin the case k = 1, we start by assuming the functions are twice differentiable,
with dom g = R and dom h = R”, in order to discover the composition rules. We
have

f'(x) = ' ()" V?h(g(2))g' () + Vh(g(2)) 9" (@), (3.15)

which is the vector analog of (3.9). Again the issue is to determine conditions under
which f”(x) > 0 for all « (or f(x) < 0 for all = for concavity). From (3.15) we
can derive many rules, for example:

f is convex if h is convex, h is nondecreasing in each argument,
and g; are convex,

f is convex if h is convex, h is nonincreasing in each argument,
and g; are concave,

f is concave if h is concave, h is nondecreasing in each argument,
and g; are concave.
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As in the scalar case, similar composition results hold in general, with n > 1, no as-
sumption of differentiability of h or g, and general domains. For the general results,
the monotonicity condition on h must hold for the extended-value extension h.
To understand the meaning of the condition that the extended-value exten-
sion h be monotonic, we consider the case where h : Rk — R is convex, and h
nondecreasing, i.e., whenever u =< v, we have h(u) < h(v). This implies that if
v € domh, then so is u: the domain of & must extend infinitely in the —R’fr

directions. We can express this compactly as dom h — Ri = dom h.

Example 3.14 Vector composition examples.

o Let h(z) = 217+ - -+ 2|, the sum of the 7 largest components of z € R*. Then
h is convex and nondecreasing in each argument. Suppose g1, ..., gr are convex
functions on R"™. Then the composition function f = h o g, i.e., the pointwise
sum of the r largest g;’s, is convex.

e The function h(z) = log(}_;_, €*) is convex and nondecreasing in each argu-
k N
ment, so log(}_;_, €%") is convex whenever g; are.

e For 0 < p < 1, the function h(z) = (Zle 2P)Y/P on RE is concave, and
its extension (which has the value —oo for z % 0) is nondecreasing in each

component. So if g; are concave and nonnegative, we conclude that f(z) =

(Zle gi(2)P)Y/P is concave.

e Suppose p > 1, and g1, ..., gr are convex and nonnegative. Then the function
(Zle gi(2)P)Y/P is convex.

To show this, we consider the function i : R* — R defined as

k 1/p
h(z) = (Z max{z;, O}p> ,

with domh = R*, so h = h. This function is convex, and nondecreasing, so
we conclude h(g(x)) is a convex function of z. For z > 0, we have h(z) =

I.C_ 2P)1/P 50 our conclusion is that I.C_ ;(2)P)V/? is convex.
(Zz_l 7 ? z_lg

e The geometric mean h(z) = ([[;_, 2)'/* on RE is concave and its extension

is nondecreasing in each argument. It follows that if g1, ..., gx are nonnegative
concave functions, then so is their geometric mean, (I—If:1 gi)l/k.

Minimization

We have seen that the maximum or supremum of an arbitrary family of convex
functions is convex. It turns out that some special forms of minimization also yield
convex functions. If f is convex in (x,y), and C' is a convex nonempty set, then
the function

g(z) = ;gg f(z,y) (3.16)



88

3 Convex functions

is convex in z, provided g(z) > —oo for all z. The domain of g is the projection of
dom f on its z-coordinates, i.e.,

domg = {z | (z,y) € dom f for some y € C}.

We prove this by verifying Jensen’s inequality for 1, o € domg. Let € > 0.
Then there are y1, yo € C such that f(z;,y;) < g(x;) + € for i = 1, 2. Now let
6 € [0,1]. We have

g(0x1 + (1 —0)xg) = yilelgf(@l’l +(1=0)xa,y)
f(Ozy + (1 = 0)z2, 0y1 + (1 — 0)y2)

Of(w1,91) + (1 = 0)f(w2,y2)
0g(x1) + (1 — 0)g(x2) + €.

IA A IA

Since this holds for any ¢ > 0, we have
9(0z1 + (1 — 0)z2) < Og(z1) + (1 — 0)g(z2).

The result can also be seen in terms of epigraphs. With f, g, and C' defined as
in (3.16), and assuming the infimum over y € C' is attained for each x, we have

epig = {(z,t) | (z,y,t) € epi f for some y € C}.

Thus epig is convex, since it is the projection of a convex set on some of its
components.

Example 3.15 Schur complement. Suppose the quadratic function
f(z,y) =27 Az + 22" By +y" Cy,
(where A and C are symmetric) is convex in (x,y), which means
[ A B

BT C > 0.

We can express g(z) = inf, f(z,y) as

g(z) =2"(A— BC"B" )z,
where CT is the pseudo-inverse of C' (see §A.5.4). By the minimization rule, g is
convex, so we conclude that A — BCTBT > 0.

If C is invertible, i.e., C > 0, then the matrix A — BC!BT is called the Schur
complement of C in the matrix

A B

BT ©

(see §A.5.5).

Example 3.16 Distance to a set. The distance of a point x to a set S C R", in the
norm || - ||, is defined as
dist(z,S) = inf ||z — y]|.
yeSs

The function ||z —y|| is convex in (z,y), so if the set S is convex, the distance function
dist(z, S) is a convex function of z.
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Example 3.17 Suppose h is convex. Then the function g defined as

g(z) = inf{h(y) | Ay =z}

is convex. To see this, we define f by

Flz,y) = { h(y) if Ay==

%9 otherwise,

which is convex in (z,y). Then g is the minimum of f over y, and hence is convex.
(It is not hard to show directly that g is convex.)

Perspective of a function
If f:R™ — R, then the perspective of f is the function ¢ : R"™* — R defined by

gla,t) = tf(x/t),

with domain
domg = {(z,t) | ¢/t € dom f, t > 0}.

The perspective operation preserves convexity: If f is a convex function, then so
is its perspective function g. Similarly, if f is concave, then so is g.

This can be proved several ways, for example, direct verification of the defining
inequality (see exercise 3.33). We give a short proof here using epigraphs and the
perspective mapping on R described in §2.3.3 (which will also explain the name
‘perspective’). For ¢ > 0 we have

(x,t,s) €epig <— tf(z/t) <s
= flz/t) < s/t
— (x/t,s/t) € epif.
Therefore epi g is the inverse image of epi f under the perspective mapping that

takes (u, v, w) to (u,w)/v. It follows (see §2.3.3) that epi g is convex, so the function
g is convex.

Example 3.18 Fuclidean norm squared. The perspective of the convex function
f(z) =27z on R" is

{ETI'

9(@,t) = t(z/H)" (a/t) = =,

which is convex in (z,t) for t > 0.

We can deduce convexity of g using several other methods. First, we can express g as
the sum of the quadratic-over-linear functions z? /t, which were shown to be convex
in §3.1.5. We can also express g as a special case of the matrix fractional function
2T (t1)"'a (see example 3.4).
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Example 3.19 Negative logarithm. Consider the convex function f(x) = —logz on
R . Its perspective is

g(z,t) = —tlog(z/t) = tlog(t/x) = tlogt — tlogx,

and is convex on R?H_. The function g is called the relative entropy of t and x. For
x =1, g reduces to the negative entropy function.

From convexity of g we can establish convexity or concavity of several interesting
related functions. First, the relative entropy of two vectors u, v € R}, defined as

Z U; log(ui/vi),
=1

is convex in (u,v), since it is a sum of relative entropies of u;, v;.

A closely related function is the Kullback-Leibler divergence between u, v € R,
given by

n
Dia(u,v) =Y (uilog(ui/vi) —wi +vs), (3.17)
i=1
which is convex, since it is the relative entropy plus a linear function of (u,v). The
Kullback-Leibler divergence satisfies Dyi(u,v) > 0, and Dyi(u,v) = 0 if and only if
u = v, and so can be used as a measure of deviation between two positive vectors; see
exercise 3.13. (Note that the relative entropy and the Kullback-Leibler divergence
are the same when u and v are probability vectors, i.e., satisfy 1Tu = 1Ty = 1.)

If we take v; = 17w in the relative entropy function, we obtain the concave (and
homogeneous) function of u € R}, given by

Z uilog(1Tu/u;) = (17 w) Z 2 log(1/z),

i=1 i=1
where z = u/(17u), which is called the normalized entropy function. The vector
z=u/ 17y is a normalized vector or probability distribution, since its components

sum to one; the normalized entropy of u is 17w times the entropy of this normalized
distribution.

Example 3.20 Suppose f : R™ — R is convex, and 4 € R™*", b € R™, c € R",
and d € R. We define

g9(z) = ("z + d)f ((Az +b)/(c"z +d)) ,

with
domg={z|c"z+d>0, (Az+b)/(c"z +d) € dom f}.
Then g is convex.

3.3 The conjugate function

In this section we introduce an operation that will play an important role in later
chapters.
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f(x)

R (RO

Figure 3.8 A function f : R — R, and a value y € R. The conjugate
function f*(y) is the maximum gap between the linear function yz and
f(x), as shown by the dashed line in the figure. If f is differentiable, this
occurs at a point x where f'(z) = y.

Definition and examples
Let f: R™ — R. The function f*: R" — R, defined as

Fy)y= sw (y'z—f(z)), (3.18)
ze€dom f

is called the conjugate of the function f. The domain of the conjugate function
consists of y € R" for which the supremum is finite, i.e., for which the difference
yT'x — f(x) is bounded above on dom f. This definition is illustrated in figure 3.8.

We see immediately that f* is a convex function, since it is the pointwise
supremum of a family of convex (indeed, affine) functions of y. This is true whether
or not f is convex. (Note that when f is convex, the subscript z € dom f is not
necessary since, by convention, y’x — f(z) = —oo for z ¢ dom f.)

We start with some simple examples, and then describe some rules for conjugat-
ing functions. This allows us to derive an analytical expression for the conjugate
of many common convex functions.

Example 3.21 We derive the conjugates of some convex functions on R.

e Affine function. f(x) = ax +b. As a function of z, yr — ax — b is bounded if
and only if y = a, in which case it is constant. Therefore the domain of the
conjugate function f* is the singleton {a}, and f*(a) = —b.

e Negative logarithm. f(x) = —logz, with dom f = R4+4. The function zy+log =
is unbounded above if y > 0 and reaches its maximum at x = —1/y otherwise.
Therefore, dom f* = {y | y < 0} = —R44 and f*(y) = —log(—y)—1 for y < 0.

e FEzponential. f(x) = e®. zy — €% is unbounded if y < 0. For y > 0, zy — €”
reaches its maximum at z = logy, so we have f*(y) = ylogy —y. For y =0,
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f*(y) = sup, —e® = 0. In summary, dom f* = R4 and f*(y) = ylogy — y
(with the interpretation 0log0 = 0).

e Negative entropy. f(z) = xzlogz, with dom f = R4 (and f(0) = 0). The
function zy — x log z is bounded above on R for all 4, hence dom f* = R.. It
attains its maximum at = V™!, and substituting we find f*(y) = e¥~'.

e Inverse. f(x) = 1/x on R4y4. For y > 0, yr — 1/ is unbounded above. For
y = 0 this function has supremum 0; for y < 0 the supremum is attained at
x = (—y) "2 Therefore we have f*(y) = —2(—y)"/?, with dom f* = —R..

Example 3.22 Strictly convex quadratic function. Consider f(z) = %zTQx, with
Q € S, . The function yTa — %xTQx is bounded above as a function of = for all y.
It attains its maximum at z = Q 'y, so

f )= %yTQ’ly

Example 3.23 Log-determinant. We consider f(X) = logdet X~* on ST,. The
conjugate function is defined as

FH(Y) = sup (tr(YX) + logdet X),
X0

since tr(Y X) is the standard inner product on S™. We first show that tr(YX) +
log det X is unbounded above unless Y < 0. If Y £ 0, then Y has an eigenvector v,
with |jv]|2 = 1, and eigenvalue A > 0. Taking X = I + tvv” we find that

tr(YX) + logdet X = tr Y + tA 4 logdet(I + tov”) = tr'Y + tA + log(1 + ¢),

which is unbounded above as t — oo.
Now consider the case Y < 0. We can find the maximizing X by setting the gradient
with respect to X equal to zero:

Vx (tr(YX) +logdet X) =Y + X' =0

(see §A.4.1), which yields X = —Y ™! (which is, indeed, positive definite). Therefore
we have
f*(Y) =logdet(=Y) ™' —n,

with dom f* = —S7} .

Example 3.24 Indicator function. Let Is be the indicator function of a (not neces-
sarily convex) set S C R", i.e., Is(x) =0 on dom Is = S. Its conjugate is

I5(y) = supy’ =,
z€eS

which is the support function of the set S.
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Example 3.25 Log-sum-exp function. To derive the conjugate of the log-sum-exp
function f(z) = log(}_"" ™), we first determine the values of y for which the
maximum over z of yTz — f(x) is attained. By setting the gradient with respect to
x equal to zero, we obtain the condition

Ti

e
=1

These equations are solvable for z if and only if 5 > 0 and 17y = 1. By substituting
the expression for y; into y” z— f(2) we obtain f*(y) = Z?:1 yi log y;. This expression
for f* is still correct if some components of y are zero, as long as y = 0 and 1Ty =1,
and we interpret 0log0 as 0.

In fact the domain of f* is exactly given by 1Ty = 1, y > 0. To show this, suppose
that a component of y is negative, say, yx < 0. Then we can show that y"x — f(x) is
unbounded above by choosing xx = —t, and x; = 0, ¢ # k, and letting ¢ go to infinity.

If y = 0 but 1Ty # 1, we choose x = 1, so that
vz — flz)=t1Ty —t —logn.
If 17y > 1, this grows unboundedly as t — oo; if 1Ty < 1, it grows unboundedly as
t — —oo.
In summary,

Fy) = St yilogy: ify=0and 17y =1
Y= « otherwise.

In other words, the conjugate of the log-sum-exp function is the negative entropy
function, restricted to the probability simplex.

Example 3.26 Norm. Let | | be a norm on R", with dual norm || - ||.. We will
show that the conjugate of f(z) = ||z|| is

f*(y):{ 0yl <1

oo otherwise,

i.e., the conjugate of a norm is the indicator function of the dual norm unit ball.
If ||y||« > 1, then by definition of the dual norm, there is a z € R™ with ||z]| < 1 and
yTz > 1. Taking = = tz and letting ¢t — co, we have

T T
y o — |zl =ty 2z = [[2]]) = oo,

which shows that f*(y) = co. Conversely, if ||y|l. < 1, then we have y"x < ||z||||y]l«
for all z, which implies for all z, y"2 — ||lz|| < 0. Therefore z = 0 is the value that
maximizes y~z — ||z||, with maximum value 0.

Example 3.27 Norm squared. Now consider the function f(x) = (1/2)]||=||?, where ||-||
is a norm, with dual norm || - ||.. We will show that its conjugate is f*(y) = (1/2)||y|2.
From y”x < ||y||«||z|, we conclude

y e = (1/2)z)* < llyll el - (1/2)]e]?
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for all . The righthand side is a quadratic function of ||z||, which has maximum
value (1/2)||y||?. Therefore for all z, we have

y e —(1/2)]el* < (1/2)llyl2,
which shows that f*(y) < (1/2)]|y||%.

To show the other inequality, let = be any vector with y”z = ||y||.||z||, scaled so that
llz|l = |ly]|«. Then we have, for this z,

y'e—(1/2)[z)* = 1/2)]y]Z,
which shows that f*(y) > (1/2)|lyl|%.

Example 3.28 Revenue and profit functions. We consider a business or enterprise that
consumes n resources and produces a product that can be sold. Welet r = (r1,...,7x)
denote the vector of resource quantities consumed, and S(r) denote the sales revenue
derived from the product produced (as a function of the resources consumed). Now
let p; denote the price (per unit) of resource 4, so the total amount paid for resources
by the enterprise is p” r. The profit derived by the firm is then S(r) —pTr. Let us fix
the prices of the resources, and ask what is the maximum profit that can be made, by
wisely choosing the quantities of resources consumed. This maximum profit is given
by
M(p) = sup (S(r) —p'r).

The function M (p) gives the maximum profit attainable, as a function of the resource
prices. In terms of conjugate functions, we can express M as

M(p) = (=5)"(=p).
Thus the maximum profit (as a function of resource prices) is closely related to the
conjugate of gross sales (as a function of resources consumed).

Basic properties

Fenchel’s inequality

From the definition of conjugate function, we immediately obtain the inequality

@)+ ff(y) ="y

for all , y. This is called Fenchel’s inequality (or Young’s inequality when f is
differentiable).
For example with f(z) = (1/2)z” Qz, where Q € S}, we obtain the inequality

)= (
2Ty < (1/2)2" Qz + (1/2)y" Q™ 'y.

Conjugate of the conjugate

The examples above, and the name ‘conjugate’, suggest that the conjugate of the
conjugate of a convex function is the original function. This is the case provided a
technical condition holds: if f is convex, and f is closed (i.e., epi f is a closed set;
see §A.3.3), then f** = f. For example, if dom f = R", then we have f** = f,
i.e., the conjugate of the conjugate of f is f again (see exercise 3.39).
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Differentiable functions

The conjugate of a differentiable function f is also called the Legendre transform
of f. (To distinguish the general definition from the differentiable case, the term
Fenchel conjugate is sometimes used instead of conjugate.)

Suppose f is convex and differentiable, with dom f = R". Any maximizer z*
of yTx — f(x) satisfies y = Vf(2*), and conversely, if 2* satisfies y = V f(2*), then
x* maximizes yTx — f(z). Therefore, if y = Vf(x*), we have

Fly) =2 TV f(a*) - f(z").

This allows us to determine f*(y) for any y for which we can solve the gradient
equation y = V f(z) for z.

We can express this another way. Let z € R" be arbitrary and define y = V f(2).
Then we have

[ (y) = 2"V f(2) = f(2).
Scaling and composition with affine transformation

For a > 0 and b € R, the conjugate of g(z) = af(z) + b is g*(y) = af*(y/a) — b.
Suppose A € R™*" is nonsingular and b € R™. Then the conjugate of g(z) =
f(Az + D) is
9" (y) = f(A7Ty) —bT ATy,
with dom ¢g* = AT dom f*.

Sums of independent functions

If f(u,v) = fi(u) + f2(v), where fi and fo are convex functions with conjugates
fr and f3, respectively, then

fr(w, 2) = fi(w) + f3 ().

In other words, the conjugate of the sum of independent convex functions is the sum
of the conjugates. (‘Independent’ means they are functions of different variables.)

Quasiconvex functions

Definition and examples

A function f: R"™ — R is called quasiconvezr (or unimodal) if its domain and all
its sublevel sets

So ={z €dom f| f(z) < a},

for o € R, are convex. A function is quasiconcave if —f is quasiconvex, i.e., every
superlevel set {z | f(z) > a} is convex. A function that is both quasiconvex and
quasiconcave is called quasilinear. If a function f is quasilinear, then its domain,
and every level set {z | f(x) = a} is convex.
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a b ¢

Figure 3.9 A quasiconvex function on R. For each a, the a-sublevel set S,
is convex, i.e., an interval. The sublevel set S, is the interval [a,b]. The
sublevel set S3 is the interval (—oo, c].

For a function on R, quasiconvexity requires that each sublevel set be an interval
(including, possibly, an infinite interval). An example of a quasiconvex function on
R is shown in figure 3.9.

Convex functions have convex sublevel sets, and so are quasiconvex. But simple
examples, such as the one shown in figure 3.9, show that the converse is not true.

Example 3.29 Some examples on R:

e Logarithm. logx on R4 is quasiconvex (and quasiconcave, hence quasilinear).
o Ceiling function. ceil(z) = inf{z € Z | z > =z} is quasiconvex (and quasicon-
cave).

These examples show that quasiconvex functions can be concave, or discontinuous.
We now give some examples on R".

Example 3.30 Length of a vector. We define the length of x € R" as the largest
index of a nonzero component, i.e.,

f(z) = max{i | z; # 0}.

(We define the length of the zero vector to be zero.) This function is quasiconvex on
R™, since its sublevel sets are subspaces:

fz)<a <= z;=0fori=|a]+1,...,n.

Example 3.31 Consider f: R?> — R, with dom f = R and f(z1,22) = 2122. This
function is neither convex nor concave since its Hessian

V(@) = [‘f H
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is indefinite; it has one positive and one negative eigenvalue. The function f is
quasiconcave, however, since the superlevel sets

{r € RY | z122 > a}

are convex sets for all a. (Note, however, that f is not quasiconcave on RQ.)

Example 3.32 Linear-fractional function. The function

atx+b

@) =T a

with dom f = {x | ¢"x + d > 0}, is quasiconvex, and quasiconcave, i.e., quasilinear.
Its a-sublevel set is

So = {z|cz+d>0, (a"z+b)/(c"z+d) <a}
= {z|cfz+d>0, d"z+b< alc"z+d)},

which is convex, since it is the intersection of an open halfspace and a closed halfspace.
(The same method can be used to show its superlevel sets are convex.)

Example 3.33 Distance ratio function. Suppose a,b € R", and define

_ llz—al:

i.e., the ratio of the Euclidean distance to a to the distance to b. Then f is quasiconvex
on the halfspace {z | ||z — a||2 < ||z — b|]|2}. To see this, we consider the a-sublevel
set of f, with o < 1 since f(z) <1 on the halfspace {z | ||z — al|2 < ||z — b||2}. This
sublevel set is the set of points satisfying

[z —all2 < alz —b|2.
Squaring both sides, and rearranging terms, we see that this is equivalent to

(1—a®z"e—2(a—a’b) s +a"a—a’b"b<0.

This describes a convex set (in fact a Euclidean ball) if o < 1.

Example 3.34 Internal rate of return. Let © = (xo,x1,...,2,) denote a cash flow
sequence over n periods, where x; > 0 means a payment to us in period ¢, and x; < 0
means a payment by us in period i. We define the present value of a cash flow, with
interest rate » > 0, to be

n

PV(z,r) = Z(l + )
i=0
(The factor (14 7)~" is a discount factor for a payment by or to us in period i.)

Now we consider cash flows for which 9 < 0 and z¢9 + 21 + --- + 2, > 0. This
means that we start with an investment of |zo| in period 0, and that the total of the
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remaining cash flow, z1 + -+ + z,, (not taking any discount factors into account)
exceeds our initial investment.

For such a cash flow, PV(z,0) > 0 and PV(z,r) = xo < 0 as r — oo, so it follows
that for at least one r > 0, we have PV(z,r) = 0. We define the internal rate of
return of the cash flow as the smallest interest rate r > 0 for which the present value
is zero:

IRR(z) = inf{r > 0 | PV(z,r) = 0}.

Internal rate of return is a quasiconcave function of x (restricted to zo < 0, 1 +-- -+
n > 0). To see this, we note that

IRR(z) > R < PV(z,r) >0for 0 <r < R.

The lefthand side defines the R-superlevel set of IRR. The righthand side is the
intersection of the sets {x | PV(z,r) > 0}, indexed by r, over the range 0 < r < R.
For each r, PV(x,r) > 0 defines an open halfspace, so the righthand side defines a
convex set.

Basic properties

The examples above show that quasiconvexity is a considerable generalization of
convexity. Still, many of the properties of convex functions hold, or have analogs,
for quasiconvex functions. For example, there is a variation on Jensen’s inequality
that characterizes quasiconvexity: A function f is quasiconvex if and only if dom f
is convex and for any z, y € dom f and 0 < 6 <1,

[0z + (1= 0)y) < max{f(z), f(y)}, (3.19)

i.e., the value of the function on a segment does not exceed the maximum of
its values at the endpoints. The inequality (3.19) is sometimes called Jensen’s
inequality for quasiconvex functions, and is illustrated in figure 3.10.

Example 3.35 Cardinality of a nonnegative vector. The cardinality or size of a
vector z € R™ is the number of nonzero components, and denoted card(z). The
function card is quasiconcave on RY} (but not R™). This follows immediately from
the modified Jensen inequality

card(z + y) > min{card(z), card(y)},

which holds for z, y > 0.

Example 3.36 Rank of positive semidefinite matriz. The function rank X is quasi-
concave on S”. This follows from the modified Jensen inequality (3.19),

rank(X +Y) > min{rank X, rank Y}

which holds for X, ¥ € 8. (This can be considered an extension of the previous
example, since rank(diag(z)) = card(x) for > 0.)
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Figure 3.10 A quasiconvex function on R. The value of f between x and y
is no more than max{f(z), f(y)}.

Like convexity, quasiconvexity is characterized by the behavior of a function f
on lines: f is quasiconvex if and only if its restriction to any line intersecting its
domain is quasiconvex. In particular, quasiconvexity of a function can be verified by
restricting it to an arbitrary line, and then checking quasiconvexity of the resulting
function on R.

Quasiconvex functions on R

We can give a simple characterization of quasiconvex functions on R. We consider
continuous functions, since stating the conditions in the general case is cumbersome.
A continuous function f: R — R is quasiconvex if and only if at least one of the
following conditions holds:

e f is nondecreasing
e f is nonincreasing

e there is a point ¢ € dom f such that for ¢t < ¢ (and ¢ € dom f), f is
nonincreasing, and for ¢ > ¢ (and ¢t € dom f), f is nondecreasing.

The point ¢ can be chosen as any point which is a global minimizer of f. Figure 3.11
illustrates this.

Differentiable quasiconvex functions

First-order conditions

Suppose f : R"™ — R is differentiable. Then f is quasiconvex if and only if dom f
is convex and for all z, y € dom f

fy) < f@) = V@) (y—2) <0. (3.20)
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Figure 3.11 A quasiconvex function on R. The function is nonincreasing for
t < ¢ and nondecreasing for ¢ > c.

Figure 3.12 Three level curves of a quasiconvex function f are shown. The
vector V f(z) defines a supporting hyperplane to the sublevel set {z | f(z) <

f(x)} at x.

This is the analog of inequality (3.2), for quasiconvex functions. We leave the proof
as an exercise (exercise 3.43).

The condition (3.20) has a simple geometric interpretation when V f(x) # 0. It
states that V f(z) defines a supporting hyperplane to the sublevel set {y | f(y) <
f(x)}, at the point z, as illustrated in figure 3.12.

While the first-order condition for convexity (3.2), and the first-order condition
for quasiconvexity (3.20) are similar, there are some important differences. For
example, if f is convex and V f(x) = 0, then z is a global minimizer of f. But this
statement is false for quasiconvex functions: it is possible that V f(z) = 0, but =
is not a global minimizer of f.
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Second-order conditions

Now suppose f is twice differentiable. If f is quasiconvex, then for all x € dom f,
and all y € R", we have

yI'Vf(z) =0= y' V2f(x)y > 0. (3.21)
For a quasiconvex function on R, this reduces to the simple condition
fll@)=0= f"(z) 20,

i.e., at any point with zero slope, the second derivative is nonnegative. For a
quasiconvex function on R", the interpretation of the condition (3.21) is a bit
more complicated. As in the case n = 1, we conclude that whenever V f(z) = 0,
we must have V2f(z) = 0. When Vf(x) # 0, the condition (3.21) means that
V2 f(z) is positive semidefinite on the (n — 1)-dimensional subspace V f(z)+. This
implies that V2 f(z) can have at most one negative eigenvalue.

As a (partial) converse, if f satisfies

yIVf(z)=0= yTV2f(z)y >0 (3.22)

for all z € dom f and all y € R"™, y £ 0, then f is quasiconvex. This condition is
the same as requiring V2 f(z) to be positive definite for any point with V f(x) = 0,
and for all other points, requiring V2 f(z) to be positive definite on the (n — 1)-

dimensional subspace V f(z)*t.

Proof of second-order conditions for quasiconvexity

By restricting the function to an arbitrary line, it suffices to consider the case in
which f: R — R.

We first show that if f : R — R is quasiconvex on an interval (a,b), then it
must satisfy (3.21), i.e., if f'(¢) = 0 with ¢ € (a,b), then we must have f”(c) > 0. If
f'(¢) = 0with ¢ € (a,b), f"(c) < 0, then for small positive e we have f(c—e) < f(c)
and f(c+¢€) < f(c). It follows that the sublevel set {z | f(z) < f(c) — €} is
disconnected for small positive €, and therefore not convex, which contradicts our
assumption that f is quasiconvex.

Now we show that if the condition (3.22) holds, then f is quasiconvex. Assume
that (3.22) holds, i.e., for each ¢ € (a,b) with f/(c) = 0, we have f”(c) > 0. This
means that whenever the function f’ crosses the value 0, it is strictly increasing.
Therefore it can cross the value 0 at most once. If f’ does not cross the value
0 at all, then f is either nonincreasing or nondecreasing on (a,b), and therefore
quasiconvex. Otherwise it must cross the value 0 exactly once, say at ¢ € (a,b).
Since f”(c) > 0, it follows that f/'(t) < 0 for a <t < ¢, and f/(t) > 0 for ¢ <t < b.
This shows that f is quasiconvex.

Operations that preserve quasiconvexity

Nonnegative weighted maximum
A nonnegative weighted maximum of quasiconvex functions, i.e.,

f = max{wlfl7"' 7wmfm}7
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with w; > 0 and f; quasiconvex, is quasiconvex. The property extends to the
general pointwise supremum

f(x) = sup(w(y)g(z,y))
yel

where w(y) > 0 and g(z,y) is quasiconvex in x for each y. This fact can be easily
verified: f(z) < « if and only if

w(y)g(z,y) < aforall y € C,

i.e., the a-sublevel set of f is the intersection of the a-sublevel sets of the functions
w(y)g(z,y) in the variable x.

Example 3.37 Generalized eigenvalue. The maximum generalized eigenvalue of a
pair of symmetric matrices (X,Y’), with Y > 0, is defined as

uT Xu

Amax (X, Y) = SUD TV sup{\ | det(A\Y — X) = 0}.

(See §A.5.3). This function is quasiconvex on dom f = S™ x S% .
To see this we consider the expression

T
u” Xu
Amax(X,Y) = —_—
(X Y) = sup Uy

For each u # 0, the function u” Xu/uTYu is linear-fractional in (X,Y), hence a
quasiconvex function of (X,Y). We conclude that Amax iS quasiconvex, since it is the
supremum of a family of quasiconvex functions.

Composition

If g: R" — R is quasiconvex and h : R — R is nondecreasing, then f = hog is
quasiconvex.

The composition of a quasiconvex function with an affine or linear-fractional
transformation yields a quasiconvex function. If f is quasiconvex, then g(z) =
f(Az +b) is quasiconvex, and §(z) = f((Az +b)/(c'z + d)) is quasiconvex on the
set

{z|c"z+d>0, (Az +b)/(c"x + d) € dom f}.

Minimization
If f(z,y) is quasiconvex jointly in = and y and C is a convex set, then the function

g(x) = yirelgf(w, Y)

is quasiconvex.
To show this, we need to show that {z | g(z) < a} is convex, where o € R is
arbitrary. From the definition of g, g(z) < « if and only if for any € > 0 there exists
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ay € C with f(z,y) < a+ e Now let z; and x2 be two points in the a-sublevel
set of g. Then for any € > 0, there exists y1, y2 € C' with

f(x17y1)§a+€a f(x27y2)§a+€a

and since f is quasiconvex in x and y, we also have
f(el'l + (1 - 9)'2:2792/1 + (1 - e)yQ) <a+ €,

for 0 < 0 < 1. Hence g(fz1 + (1 — 0)x2) < «, which proves that {z | g(z) < o} is
convex.

Representation via family of convex functions

In the sequel, it will be convenient to represent the sublevel sets of a quasiconvex
function f (which are convex) via inequalities of convex functions. We seek a family
of convex functions ¢; : R" — R, indexed by t € R, with

flz) <t < ¢(z) <0, (3.23)

i.e., the t-sublevel set of the quasiconvex function f is the 0-sublevel set of the
convex function ¢;. Evidently ¢; must satisfy the property that for all z € R",
pr(x) <0 = ¢s(x) < 0 for s > t. This is satisfied if for each z, ¢:(z) is a
nonincreasing function of ¢, i.e., ¢s(z) < ¢¢(x) whenever s > t.

To see that such a representation always exists, we can take

(Mm):{ 0 flz)<t

oo otherwise,

i.e., ¢ is the indicator function of the t-sublevel of f. Obviously this representation
is not unique; for example if the sublevel sets of f are closed, we can take

¢u(x) = dist (z,{z | f(z) <t}).

We are usually interested in a family ¢, with nice properties, such as differentia-
bility.

Example 3.38 Convez over concave function. Suppose p is a convex function, ¢ is a
concave function, with p(z) > 0 and ¢(z) > 0 on a convex set C. Then the function
f defined by f(z) = p(z)/q(x), on C, is quasiconvex.

Here we have
f(z) <t <= p(x) —tg(x) <0,

so we can take ¢(z) = p(z) — tq(z) for ¢ > 0. For each ¢, ¢ is convex and for each
x, ¢(x) is decreasing in t.
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3.5
3.5.1

Log-concave and log-convex functions
Definition

A function f : R"™ — R is logarithmically concave or log-concave if f(x) > 0
for all z € dom f and log f is concave. It is said to be logarithmically convex
or log-convez if log f is convex. Thus f is log-convex if and only if 1/f is log-
concave. It is convenient to allow f to take on the value zero, in which case we
take log f(x) = —oo. In this case we say f is log-concave if the extended-value
function log f is concave.

We can express log-concavity directly, without logarithms: a function f : R —
R, with convex domain and f(x) > 0 for all z € dom f, is log-concave if and only
if for all z, y € dom f and 0 < 0 < 1, we have

fO0z+ (1 —0)y) > f(z)" f(y)' .

In particular, the value of a log-concave function at the average of two points is at
least the geometric mean of the values at the two points.

From the composition rules we know that e” is convex if h is convex, so a log-
convex function is convex. Similarly, a nonnegative concave function is log-concave.
It is also clear that a log-convex function is quasiconvex and a log-concave function
is quasiconcave, since the logarithm is monotone increasing.

Example 3.39 Some simple examples of log-concave and log-convex functions.

o Affine function. f(x) = a’x + b is log-concave on {z | a’z + b > 0}.
e Powers. f(z) = x%, on Ryy, is log-convex for a < 0, and log-concave for a > 0.
e Exponentials. f(x) = e*® is log-convex and log-concave.

e The cumulative distribution function of a Gaussian density,

[ :
D(z) = \/727’/ e/ du,

is log-concave (see exercise 3.54).

e Gamma function. The Gamma function,

I'(z) :/ u e du,
0

is log-convex for « > 1 (see exercise 3.52).
o Determinant. det X is log concave on S’ . .

e Determinant over trace. det X/tr X is log concave on S’ (see exercise 3.49).

Example 3.40 Log-concave density functions. Many common probability density
functions are log-concave. Two examples are the multivariate normal distribution,

f(x) = ;6_%("”_5)7“271(1—5)

(2m)" det 2
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(where Z € R™ and ¥ € 87, ), and the exponential distribution on RY,

” T
flz) = <H /\i> e M
i=1
(where X\ > 0). Another example is the uniform distribution over a convex set C,

{ 1/a zeC

f(x) = 0 z¢C

where a = vol(C) is the volume (Lebesgue measure) of C. In this case log f takes
on the value —oo outside C, and —loga on C|, hence is concave.

As a more exotic example consider the Wishart distribution, defined as follows. Let

Z1,...,Zp € R™ be independent Gaussian random vectors with zero mean and co-
variance ¥ € 8™ with p > n. The random matrix X = Zle z;zl has the Wishart
density

F(X) = a(det X)Pn=D/2 =3 02X
with dom f = S7 ,, and a is a positive constant. The Wishart density is log-concave,
since

log f(X) =loga+ 1%71 logdet X — %tr(EilX),

which is a concave function of X.

Properties

Twice differentiable log-convex/concave functions

Suppose f is twice differentiable, with dom f convex, so

v - v V)T
oy V@~ V@V

We conclude that f is log-convex if and only if for all z € dom f,
@)V f(x) = Vf(@)V ()",
and log-concave if and only if for all x € dom f,

@)V f(z) V@)V ()"

Vlog f(z) =

Multiplication, addition, and integration

Log-convexity and log-concavity are closed under multiplication and positive scal-
ing. For example, if f and g are log-concave, then so is the pointwise product
h(z) = f(x)g(x), since log h(x) = log f(x) + log g(z), and log f(x) and log g(z) are
concave functions of x.

Simple examples show that the sum of log-concave functions is not, in general,
log-concave. Log-convexity, however, is preserved under sums. Let f and g be log-
convex functions, i.e., F' = log f and G = log g are convex. From the composition
rules for convex functions, it follows that

log (exp F' + exp G) = log(f + g)
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is convex. Therefore the sum of two log-convex functions is log-convex.
More generally, if f(x,y) is log-convex in x for each y € C' then

g(x) = /Cf(lny) dy

is log-convex.

Example 3.41 Laplace transform of a nonnegative function and the moment and
cumulant generating functions. Suppose p : R™ — R satisfies p(z) > 0 for all z. The
Laplace transform of p,

P(2) = / ple)e="" de,

is log-convex on R™. (Here dom P is, naturally, {z | P(z) < co}.)

Now suppose p is a density, i.e., satisfies fp(:r,) dz = 1. The function M (z) = P(—z)
is called the moment generating function of the density. It gets its name from the fact
that the moments of the density can be found from the derivatives of the moment
generating function, evaluated at z = 0, e.g.,

VM(0)=Ev, V’M(0)=Euw",

where v is a random variable with density p.

The function log M (z), which is convex, is called the cumulant generating function
for p, since its derivatives give the cumulants of the density. For example, the first
and second derivatives of the cumulant generating function, evaluated at zero, are
the mean and covariance of the associated random variable:

ViegM(0) =Ev,  V?log M(0) =E(v—Ev)(v—Ev)".

Integration of log-concave functions

In some special cases log-concavity is preserved by integration. If f : R"xR™ — R
is log-concave, then

g(z) = /f(fﬂ, y) dy

is a log-concave function of  (on R™). (The integration here is over R™.) A proof
of this result is not simple; see the references.

This result has many important consequences, some of which we describe in
the rest of this section. It implies, for example, that marginal distributions of log-
concave probability densities are log-concave. It also implies that log-concavity is
closed under convolution, i.e., if f and g are log-concave on R", then so is the
convolution

(fxg)(z) = /f(:v —y)g(y) dy.

(To see this, note that g(y) and f(x—y) are log-concave in (z,y), hence the product
f(z —y)g(y) is; then the integration result applies.)
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Suppose C C R" is a convex set and w is a random vector in R" with log-
concave probability density p. Then the function

f(z) = prob(z +w € C)

is log-concave in x. To see this, express f as

fa) = / oz + w)p(w) dw,

where ¢ is defined as
(u) = 1 weCl
W=V 0 uwec,

(which is log-concave) and apply the integration result.

Example 3.42 The cumulative distribution function of a probability density function
f:R™ — R is defined as

F(ac):prob(wjgg):/In.../m1 f(z)dz -+ dzn,

where w is a random variable with density f. If f is log-concave, then F' is log-
concave. We have already encountered a special case: the cumulative distribution
function of a Gaussian random variable,

fla) = \/% / e dt,

is log-concave. (See example 3.39 and exercise 3.54.)

Example 3.43 Yield function. Let x € R"™ denote the nominal or target value of a
set of parameters of a product that is manufactured. Variation in the manufacturing
process causes the parameters of the product, when manufactured, to have the value
z + w, where w € R" is a random vector that represents manufacturing variation,
and is usually assumed to have zero mean. The yield of the manufacturing process,
as a function of the nominal parameter values, is given by

Y (z) = prob(z +w € S),

where S C R" denotes the set of acceptable parameter values for the product, i.e.,
the product specifications.

If the density of the manufacturing error w is log-concave (for example, Gaussian) and
the set S of product specifications is convex, then the yield function Y is log-concave.
This implies that the a-yield region, defined as the set of nominal parameters for
which the yield exceeds «, is convex. For example, the 95% yield region

{z|Y(z) >0.95} = {z | logY(z) > log0.95}

is convex, since it is a superlevel set of the concave function logY.
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3.6

3.6.1

Example 3.44 Volume of polyhedron. Let A € R™*". Define
P, ={x e R" | Ax < u}.

Then its volume vol P, is a log-concave function of .

To prove this, note that the function

1 Az =<u
W (z,u) = { 0 otherwise,

is log-concave. By the integration result, we conclude that

/\Il(x,u) dx = vol P,

is log-concave.

Convexity with respect to generalized inequalities

We now consider generalizations of the notions of monotonicity and convexity, using
generalized inequalities instead of the usual ordering on R.

Monotonicity with respect to a generalized inequality

Suppose K C R" is a proper cone with associated generalized inequality <. A
function f : R"™ — R is called K-nondecreasing if

2k y = flz) < fy),

and K-increasing if
T2k y, z#Fy= f(z) < f(y).

We define K-nonincreasing and K-decreasing functions in a similar way.

Example 3.45 Monotone vector functions. A function f : R™ — R is nondecreasing
with respect to RY if and only if

for all x, y. This is the same as saying that f, when restricted to any component x;
(i.e., x; is considered the variable while z; for j # ¢ are fixed), is nondecreasing.

Example 3.46 Matriz monotone functions. A function f : S" — R is called ma-
triz monotone (increasing, decreasing) if it is monotone with respect to the posi-
tive semidefinite cone. Some examples of matrix monotone functions of the variable
X es™
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e tr(WX), where W € S™, is matrix nondecreasing if W > 0, and matrix in-
creasing if W > 0 (it is matrix nonincreasing if W < 0, and matrix decreasing
if W <0).

e tr(X ') is matrix decreasing on 8% .

e det X is matrix increasing on S% ,, and matrix nondecreasing on S’ .

Gradient conditions for monotonicity

Recall that a differentiable function f : R — R, with convex (i.e., interval) domain,
is nondecreasing if and only if f/(z) > 0 for all z € dom f, and increasing if
f'(x) > 0 for all z € dom f (but the converse is not true). These conditions
are readily extended to the case of monotonicity with respect to a generalized
inequality. A differentiable function f, with convex domain, is K-nondecreasing if
and only if

Vf(z) =g« 0 (3.24)
for all x+ € dom f. Note the difference with the simple scalar case: the gradi-
ent must be nonnegative in the dual inequality. For the strict case, we have the
following: If

Vf(z) =g+ 0 (3.25)
for all z € dom f, then f is K-increasing. As in the scalar case, the converse is
not true.

Let us prove these first-order conditions for monotonicity. First, assume that

f satisfies (3.24) for all , but is not K-nondecreasing, i.e., there exist x, y with
x 2k y and f(y) < f(z). By differentiability of f there exists a ¢ € [0, 1] with

SHtly — ) = Vi + iy~ 0) (-~ ) <0,
Since y — x € K this means
Vi@ +ily — ) & K,

which contradicts our assumption that (3.24) is satisfied everywhere. In a similar
way it can be shown that (3.25) implies f is K-increasing.

It is also straightforward to see that it is necessary that (3.24) hold everywhere.
Assume (3.24) does not hold for # = z. By the definition of dual cone this means
there exists a v € K with

Vf(z)Tv <o.
Now consider h(t) = f(z + tv) as a function of . We have h'(0) = Vf(2)Tv < 0,
and therefore there exists t > 0 with h(t) = f(z + tv) < h(0) = f(z), which means
f is not K-nondecreasing.

Convexity with respect to a generalized inequality

Suppose K C R™ is a proper cone with associated generalized inequality <y . We
say f: R" — R™ is K-convez if for all z, y, and 0 < 0 < 1,

f0z+ (1—-0)y) <k Of(z)+ (1—0)f(y).
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The function is strictly K-convex if

fx+ (1 —=0)y) <x 0f(x)+(1-0)f(y)

for all x # y and 0 < < 1. These definitions reduce to ordinary convexity and
strict convexity when m =1 (and K = R).

Example 3.47 Convexity with respect to componentwise inequality. A function f :
R"™ — R™ is convex with respect to componentwise inequality (i.e., the generalized
inequality induced by RT') if and only if for all z, y and 0 <0 < 1,

fOx+ (1 =0)y) 20f(x)+ (1 —-0)f(y),

i.e., each component f; is a convex function. The function f is strictly convex with
respect to componentwise inequality if and only if each component f; is strictly con-
vex.

Example 3.48 Matriz convezity. Suppose f is a symmetric matrix valued function,
i.e., f: R™ — S™. The function f is convex with respect to matrix inequality if

fO0x+ (1 —=0)y) 20f(x)+(1-0)f(y)

for any = and y, and for 6 € [0,1]. This is sometimes called matriz convezity. An
equivalent definition is that the scalar function z” f(x)z is convex for all vectors z.
(This is often a good way to prove matrix convexity). A matrix function is strictly
matrix convex if

fOx+ (1 —=0)y) <0f(x)+(1—-0)f(y)
when z # y and 0 < 6 < 1, or, equivalently, if 27 fz is strictly convex for every z # 0.

Some examples:
e The function f(X) = XX where X € R™ ™ is matrix convex, since for

fixed z the function 27 X X7z = || X7 2||3 is a convex quadratic function of (the
components of) X. For the same reason, f(X) = X? is matrix convex on S™.

e The function X7 is matrix convex on S}, for 1 <p <2 or —1 < p <0, and
matrix concave for 0 < p < 1.

e The function f(X) = e~ is not matrix convex on 8", for n > 2.

Many of the results for convex functions have extensions to K-convex functions.
As a simple example, a function is K-convex if and only if its restriction to any
line in its domain is K-convex. In the rest of this section we list a few results for
K-convexity that we will use later; more results are explored in the exercises.

Dual characterization of K-convexity

A function f is K-convex if and only if for every w =g~ 0, the (real-valued) function
wT f is convex (in the ordinary sense); f is strictly K-convex if and only if for every
nonzero w >+ 0 the function w? f is strictly convex. (These follow directly from
the definitions and properties of dual inequality.)
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Differentiable K-convex functions

A differentiable function f is K-convex if and only if its domain is convex, and for
all z, y € dom f,

fy) =k f(z) + Df(x)(y — ).

(Here Df(x) € R™*" is the derivative or Jacobian matrix of f at x; see §A.4.1.)
The function f is strictly K-convex if and only if for all z, y € dom f with = # y,

f(y) =k f(x) + Df(x)(y — ).

Composition theorem

Many of the results on composition can be generalized to K-convexity. For example,
if g: R" — R” is K-convex, h : R — R is convex, and h (the extended-value
extension of h) is K-nondecreasing, then h o g is convex. This generalizes the fact
that a nondecreasing convex function of a convex function is convex. The condition
that h be K-nondecreasing implies that dom h — K = dom h.

Example 3.49 The quadratic matrix function g : R™*™ — S™ defined by
g(X)=X"AX+B"X +X"B+C,

where A € S™, B € R™*", and C € S", is convex when A = 0.

The function h : S™ — R defined by h(Y) = —logdet(—Y") is convex and increasing
on domh = —S% .

By the composition theorem, we conclude that
f(X) = —logdet(—(X"AX + B"X + X" B+ (C))
is convex on
domf={XecR™" | X"AX+B" X+ X"B+C <0}.
This generalizes the fact that
—log(—(az® + bz +¢))

is convex on

{z € R |az” + bz + ¢ < 0},
provided a > 0.
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Exercises

Definition of convexity

3.1 Suppose f: R — R is convex, and a, b € dom f with a < b.
(a) Show that

b—=x r—a

J@) € =2 f @)+ 3

f(®)

—a
for all = € [a, b].

(b) Show that
fz) = fla) _ J(b) = fla)  F(b) — f(2)

Tr—a b—a - b—x

for all x € (a,b). Draw a sketch that illustrates this inequality.
(c¢) Suppose f is differentiable. Use the result in (b) to show that
1) ~ fla) _

b—a -

f'a) < f' ().

Note that these inequalities also follow from (3.2):
f) > fla)+ f(a)(b—a),  fla)> f(b)+ f'(b)(a—0b).

(d) Suppose f is twice differentiable. Use the result in (c) to show that f”(a) > 0 and
f"(b) 2 0.

3.2 Level sets of convex, concave, quasiconver, and quasiconcave functions. Some level sets
of a function f are shown below. The curve labeled 1 shows {z | f(z) = 1}, etc.

3
2

Could f be convex (concave, quasiconvex, quasiconcave)? Explain your answer. Repeat
for the level curves shown below.
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3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Inverse of an increasing convez function. Suppose f : R — R is increasing and convex
on its domain (a,b). Let g denote its inverse, i.e., the function with domain (f(a), f(b))
and g(f(z)) = = for a < z < b. What can you say about convexity or concavity of g?

[RVT73, page 15] Show that a continuous function f: R"™ — R is convex if and only if for
every line segment, its average value on the segment is less than or equal to the average
of its values at the endpoints of the segment: For every z, y € R",

/lf(xu(y—x))dxgf(x);f(y).

[RVT3, page 22] Running average of a convez function. Suppose f : R — R is convex,
with R4 C dom f. Show that its running average F', defined as

F(w):%/ f(t)dt, domF —Ruy,
0

is convex. Hint. For each s, f(sz) is convex in z, so fol f(sz) ds is convex.

Functions and epigraphs. When is the epigraph of a function a halfspace? When is the
epigraph of a function a convex cone? When is the epigraph of a function a polyhedron?

Suppose [ : R™ — R is convex with dom f = R", and bounded above on R". Show that
f is constant.

Second-order condition for convezity. Prove that a twice differentiable function f is convex
if and only if its domain is convex and V2 f(x) = 0 for all x € dom f. Hint. First consider
the case f : R — R. You can use the first-order condition for convexity (which was proved
on page 70).

Second-order conditions for converxity on an affine set. Let F € R™™, & € R™. The
restriction of f: R™ — R to the affine set {Fz+ 2 | z € R™} is defined as the function

f:R™ — R with
f(2) = f(Fz + &), dom f = {z | Fz + & € dom f}.
Suppose f is twice differentiable with a convex domain.
(a) Show that f is convex if and only if for all z € dom f
F'V?f(Fz+2)F = 0.

(b) Suppose A € RP*™ is a matrix whose nullspace is equal to the range of F, i.e.,

AF = 0 and rank A = n —rank F'. Show that f is convex if and only if for all
z € dom f there exists a A € R such that

Vif(Fz+ &)+ ATA = 0.

Hint. Use the following result: If B € 8™ and A € RPX", then 7 Bz > 0 for all
x € N(A) if and only if there exists a A such that B+ XATA = 0.

An extension of Jensen’s inequality. One interpretation of Jensen’s inequality is that
randomization or dithering hurts, i.e., raises the average value of a convex function: For
f convex and v a zero mean random variable, we have E f(zo + v) > f(z0). This leads
to the following conjecture. If f is convex, then the larger the variance of v, the larger
E f(zo 4+ v).

(a) Give a counterexample that shows that this conjecture is false. Find zero mean
random variables v and w, with var(v) > var(w), a convex function f, and a point
xo, such that E f(zo + v) < E f(zo + w).
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(b) The conjecture is true when v and w are scaled versions of each other. Show that
E f(xo + tv) is monotone increasing in ¢ > 0, when f is convex and v is zero mean.

3.11 Monotone mappings. A function ¢ : R™ — R" is called monotone if for all z, y € dom,

(@) = ¥(y)" (@ —y) 2 0.

(Note that ‘monotone’ as defined here is not the same as the definition given in §3.6.1.
Both definitions are widely used.) Suppose f : R™ — R is a differentiable convex function.
Show that its gradient Vf is monotone. Is the converse true, ¢.e., is every monotone
mapping the gradient of a convex function?

3.12 Suppose f : R" — R is convex, g : R" — R is concave, dom f = domg = R", and
for all z, g(z) < f(z). Show that there exists an affine function h such that for all z,
g(z) < h(z) < f(x). In other words, if a concave function g is an underestimator of a
convex function f, then we can fit an affine function between f and g.

3.13 Kullback-Leibler divergence and the information inequality. Let Dy be the Kullback-
Leibler divergence, as defined in (3.17). Prove the information inequality: Di(u,v) > 0
for all u, v € R} .. Also show that Di(u,v) = 0 if and only if u = v.

Hint. The Kullback-Leibler divergence can be expressed as

Dia(u,v) = f(u) = f(v) = Vf(0)" (u—0),

where f(v) = > "  wilogw; is the negative entropy of v.

3.14 Convez-concave functions and saddle-points. We say the function f : R" x R™ — R
is convez-concave if f(z,z) is a concave function of z, for each fixed z, and a convex
function of z, for each fixed z. We also require its domain to have the product form
dom f = A x B, where A C R" and B C R™ are convex.

(a) Give a second-order condition for a twice differentiable function f: R" x R™ — R
to be convex-concave, in terms of its Hessian V2 f(z, 2).

(b) Suppose that f : R"xR™ — R is convex-concave and differentiable, with V f(Z, 2) =
0. Show that the saddle-point property holds: for all x, z, we have

f(&,2) < f(2,2) < f(=,2).
Show that this implies that f satisfies the strong maz-min property:

sup inf f(z,2) = inf sup f(z, 2)

z T T z

(and their common value is f(z, 2)).

(¢) Now suppose that f: R" x R™ — R is differentiable, but not necessarily convex-
concave, and the saddle-point property holds at Z, z:

f(@,2) < f(&,2) < f(z,2)
for all z, z. Show that Vf(z,2) = 0.

Examples
3.15 A family of concave utility functions. For 0 < o < 1 let

¢ —1
uﬁ(x) = o )

with domu, = R4. We also define uo(z) = logz (with domug = R44).

(a) Show that for z > 0, uo(x) = lima—o0 ua(z).
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(b) Show that u. are concave, monotone increasing, and all satisfy uq (1) = 0.

These functions are often used in economics to model the benefit or utility of some quantity
of goods or money. Concavity of u, means that the marginal utility (i.e., the increase
in utility obtained for a fixed increase in the goods) decreases as the amount of goods
increases. In other words, concavity models the effect of satiation.

3.16 For each of the following functions determine whether it is convex, concave, quasiconvex,
or quasiconcave.

(a) f(z) =e®—1onR.
(b) f(z1,m2) = z1z2 on RY .

(x1,22) = 1/(z122) on R3 .

(z1,22) = z1/x2 Oon R?H_.

(w1, 72) = 23 /22 on R x R4
(f) f(w1,22) = 25 x5~ *, where 0 < @ < 1, on R%,.

3.17 Suppose p < 1, p # 0. Show that the function

n 1/p
@)= (Z w)

with dom f = R}, is concave. This includes as special cases f(z) = (3 1:1/2)2 and

i=1Ti
the harmonic mean f(z) = (3., 1/z:)~". Hint. Adapt the proofs for the log-sum-exp
function and the geometric mean in §3.1.5.

3.18 Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the follow-
ing.

(a) f(X)=tr (X_l) is convex on dom f = S% , .
(b) f(X) = (det X)¥™ is concave on dom f = S} .
3.19 Nonnegative weighted sums and integrals.

(a) Show that f(z) = >,

;=1 i) is a convex function of z, where a1 > az > -+ >
ay > 0, and z[; denotes the ith largest component of z. (You can use the fact that

flz) = Zle x[;) is convex on R".)
(b) Let T(z,w) denote the trigonometric polynomial

T(z,w) =21 + x2c08w + 3082w + - - - + Ty cos(n — 1)w.

Show that the function
27
flz) = 7/ log T(z,w) dw
0

is convex on {z € R" | T'(z,w) >0, 0 <w < 27}.
3.20 Composition with an affine function. Show that the following functions f : R™ — R are

convex.
(a) f(z)=||Az — V|, where A € R™*" be R™, and | - || is a norm on R™.
(b) f(z) = —(det(Ap + z1 A1 + -+ + a:nAn))l/m, on{z| Ao+ 141+ -+, A4, = 0},
where A; € S™.

(¢) f(X)=tr(Ao+z1A1 + -+ 2,4,) " on {z| Ag+z1 41+ -+2,A, > 0}, where
A; € 8™. (Use the fact that tr(X ') is convex on ST ; see exercise 3.18.)
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3.21 Pointwise mazimum and supremum. Show that the following functions f : R" — R are
convex.

(a) f(z) = maxi—1, i |[ADz —bD||, where A € R™*™ b ¢ R™ and || - || is a norm
on R™.

(b) f(z) =>"7_, |z[f on R", where |z| denotes the vector with |z|; = |zi| (i.e., |z] is
the absolute value of x, componentwise), and |z|}; is the ith largest component of
|z|. In other words, |z|j1}, |12, - -, || are the absolute values of the components
of z, sorted in nonincreasing order.

3.22 Composition rules. Show that the following functions are convex.

(a) f(z) = —log(—log(d> ", " *)) on dom f = {z | > e ¥ < 1}. You can

use the fact that log(} " | ”%) is convex.

(b) f(z,u,v) = —vuv — Tz on dom f = {(z,u,v) | v > ¥z, u, v > 0}. Use the
fact that 7 x/u is convex in (z,u) for u > 0, and that —,/Z1z2 is convex on R .

(¢) f(z,u,v) = —log(uv — z7x) on dom f = {(z,u,v) | uv > z¥z, u, v > 0}.

(d) f(x,t) = —(t* —||z||5)"/? where p > 1 and dom f = {(z,t) | t > ||lz||p}. You can use
the fact that |lz||5/u”~" is convex in (z,u) for u > 0 (see exercise 3.23), and that
—z/Pyt=1/P is convex on R2 (see exercise 3.16).

(e) f(z,t) = —log(t? — ||x||5) where p > 1 and dom f = {(z,t) | t > ||z||p}. You can
use the fact that ||z||5/u”~" is convex in (z,u) for u > 0 (see exercise 3.23).

3.23 Perspective of a function.
(a) Show that for p > 1,

JZ1]P + -+ Janl” 2}
f(l',t) = tp_l = tp—f
is convex on {(z,t) | t > 0}.
(b) Show that
_ Az + bl
flz) = cTz+d

is convex on {z | "z +d > 0}, where A € R™*" b€ R™, cc R™ and d € R.

3.24 Some functions on the probability simpler. Let x be a real-valued random variable which
takes values in {ai,...,an} where a1 < a2 < -+ < an, with prob(z = a;) = p;,
i =1,...,n. For each of the following functions of p (on the probability simplex {p €
RY | 1Tp = 1}), determine if the function is convex, concave, quasiconvex, or quasicon-
cave.

)
) prob(z > «).
(¢) prob(a <z < p).
(d) Z?zl pi log p;i, the negative entropy of the distribution.
) varz = E(z — Ex)%.
) quartile(z) = inf{8 | prob(z < ) > 0.25}.

)

The cardinality of the smallest set A C {a1,...,an} with probability > 90%. (By
cardinality we mean the number of elements in A.)

(h) The minimum width interval that contains 90% of the probability, i.e.,
inf {f —a| prob(a <z <) >009}.
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3.25 Maximum probability distance between distributions. Let p, ¢ € R represent two proba-
bility distributions on {1,...,n} (sop, ¢ = 0, 17p = 1T¢ = 1). We define the mazimum
probability distance dmp(p, q) between p and ¢ as the maximum difference in probability
assigned by p and ¢, over all events:

dmp (p, ¢) = max{| prob(p, C) — prob(q,C)[ | C C {1,...,n}}.
Here prob(p,C) is the probability of C, under the distribution p, i.e., prob(p,C) =
icc Pi-

Find a simple expression for dmp, involving ||p —ql[y = >, |pi — ¢i|, and show that dump,
is a convex function on R"™ x R™. (Its domain is {(p,q) | p, ¢ = 0, 1Tp =1T¢ = 1}, but
it has a natural extension to all of R™ x R".)

3.26 More functions of eigenvalues. Let A1 (X) > Aa(X) > -+ > Ay (X) denote the eigenvalues
of a matrix X € S™. We have already seen several functions of the eigenvalues that are
convex or concave functions of X.

e The maximum eigenvalue A1 (X) is convex (example 3.10). The minimum eigenvalue
An(X) is concave.

e The sum of the eigenvalues (or trace), tr X = A\ (X) + -+ - + An(X), is linear.

e The sum of the inverses of the eigenvalues (or trace of the inverse), tr(X ') =
Yo 1/Xi(X), is convex on 8%, (exercise 3.18).

e The geometric mean of the eigenvalues, (det X)Y/" = (IT-, Ai(X)Y/™, and the
logarithm of the product of the eigenvalues, logdet X = Z:‘:l log A\;(X), are concave
on X € S, (exercise 3.18 and page 74).
In this problem we explore some more functions of eigenvalues, by exploiting variational
characterizations.
(a) Sum of k largest eigenvalues. Show that Zle Ai(X) is convex on S". Hint. [HJ85,
page 191] Use the variational characterization

k
D M(X) =sup{tr(VIXV) [V e RV VIV =13
=1

(b) Geometric mean of k smallest eigenvalues. Show that ( :L:nfkﬂ i (X)Y* is con-

cave on S% . Hint. [MO79, page 513] For X > 0, we have

" 1/k
( H MX)) = %inf{tr(VTXV) |V eR™ det VTV =1}.
i=n—k+1

(¢) Log of product of k smallest eigenvalues. Show that len_k_,_l

on ST, . Hint. [MO79, page 513] For X > 0,

ﬁ Ai(X) = inf { [TV xv).

i=n—k+1 i=1

log A\;(X) is concave

VeR vy = [} .

3.27 Diagonal elements of Cholesky factor. Each X € S’ | has a unique Cholesky factorization

X = LLT, where L is lower triangular, with L;; > 0. Show that L;; is a concave function
of X (with domain S ).

Hint. L;; can be expressed as Li; = (w — ZTYflz)l/Q, where

is the leading i X ¢ submatrix of X.
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Operations that preserve convexity

Ezpressing a convex function as the pointwise supremum of a family of affine functions.
In this problem we extend the result proved on page 83 to the case where dom f # R".
Let f: R™ — R be a convex function. Define f : R™ — R as the pointwise supremum of
all affine functions that are global underestimators of f:

F(z) = sup{g(a) | g affine, g(2) < f(2) for all 2}.
(a) Show that f(z) = f(z) for x € int dom f.

(b) Show that f = f if f is closed (i.e., epi f is a closed set; see §A.3.3).
Representation of piecewise-linear convex functions. A function f : R" — R, with
dom f = R", is called piecewise-linear if there exists a partition of R™ as

R" =X UXoU---UXy,
where int X; # 0 and int X; Nint X; = @ for ¢ # j, and a family of affine functions
afz+by, ..., afﬂc + br such that f(z) = a?m +b; for x € X;.
Show that this means that f(z) = max{a{x +b1,...,alx +br}.
Convex hull or envelope of a function. The conver hull or convexr envelope of a function
f:R"™ — R is defined as
g(x) = inf{t | (z,t) € convepi f}.

Geometrically, the epigraph of g is the convex hull of the epigraph of f.

Show that g is the largest convex underestimator of f. In other words, show that if h is
convex and satisfies h(z) < f(z) for all z, then h(z) < g(z) for all .

[Roc70, page 35] Largest homogeneous underestimator. Let f be a convex function. Define
the function g as
inf £(22)

g(x) - a>0 «
(a) Show that g is homogeneous (g(tz) = tg(x) for all ¢ > 0).

(b) Show that g is the largest homogeneous underestimator of f: If h is homogeneous
and h(z) < f(z) for all , then we have h(z) < g(z) for all .

(c) Show that g is convex.

Products and ratios of convex functions. In general the product or ratio of two convex
functions is not convex. However, there are some results that apply to functions on R.
Prove the following.

(a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions
on an interval, then fg is convex.

(b) If f, g are concave, positive, with one nondecreasing and the other nonincreasing,
then fg is concave.

(c) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and
positive, then f/g is convex.

Direct proof of perspective theorem. Give a direct proof that the perspective function g,
as defined in §3.2.6, of a convex function f is convex: Show that dom g is a convex set,
and that for (z,t), (y,s) € domg, and 0 < 0 < 1, we have

90z + (1 = 0)y,0t + (1 = 0)s) < Og(x,t) + (1 - 0)g(y, s).
The Minkowski function. The Minkowski function of a convex set C' is defined as

Mc(x) =inf{t >0 |t 'z € C}.
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) Draw a picture giving a geometric interpretation of how to find Mc¢ ().
) Show that Mc¢ is homogeneous, i.e., Mc(ax) = aMc(z) for a > 0.
(c) What is dom Mc?
) Show that Mc is a convex function.
)

Suppose C' is also closed, bounded, symmetric (if z € C then —z € C), and has
nonempty interior. Show that M¢ is a norm. What is the corresponding unit ball?

3.35 Support function calculus. Recall that the support function of a set C C R" is defined as
Sc(y) = sup{yTz | € C'}. On page 81 we showed that Sc is a convex function.

(a) Show that Sp = Sconv B.

(b) Show that Sa+p = Sa + SB.

(¢) Show that Saup = max{Sa, Ss}.
)

(d) Let B be closed and convex. Show that A C B if and only if Sa(y) < Sp(y) for all
Y.

Conjugate functions
3.36 Derive the conjugates of the following functions.
(a) Maz function. f(x) = max;=1,.. nz; on R".
(b) Sum of largest elements. f(zx) =" xf) on R™.

(¢) Piecewise-linear function on R. f(z) = max;—1,. m(a;x + b;) on R. You can
assume that the a; are sorted in increasing order, i.e., a1 < --- < am, and that none
of the functions a;x + b; is redundant, i.e., for each k there is at least one x with
f($) = arx + bg.

(d) Power function. f(x) = ¥ on R44, where p > 1. Repeat for p < 0.
(e) Negative geometric mean. f(z) = —([J=:)"/™ on R .

(f) Negative generalized logarithm for second-order cone. f(x,t) = —log(t* — z7x) on

{(z,t) e R" x R | ||z]|2 < t}.
3.37 Show that the conjugate of f(X) = tr(X ') with dom f = ST is given by

f(Y)=—2tr(-Y)"?,  dom f* = —S%.

Hint. The gradient of f is Vf(X) = —X 2.

3.38 Young’s inequality. Let f: R — R be an increasing function, with f(0) = 0, and let g be
its inverse. Define F' and G as

Fla) = / “fla)da,  Gly) = / " g(e) da.

Show that F' and G are conjugates. Give a simple graphical interpretation of Young’s
inequality,
zy < F(z) + G(y)-

3.39 Properties of conjugate functions.
(a) Conjugate of convex plus affine function. Define g(x) = f(z) + ¢"z + d, where f is
convex. Express ¢* in terms of f* (and ¢, d).

(b) Conjugate of perspective. Express the conjugate of the perspective of a convex
function f in terms of f*.
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(c) Conjugate and minimization. Let f(z,z) be convex in (z,z) and define g(z) =
inf, f(x,z). Express the conjugate g* in terms of f*.
As an application, express the conjugate of g(z) = inf.{h(z) | Az+b = z}, where h
is convex, in terms of h*, A, and b.

(d) Conjugate of conjugate. Show that the conjugate of the conjugate of a closed convex
function is itself: f = f** if f is closed and convex. (A function is closed if its
epigraph is closed; see §A.3.3.) Hint. Show that f** is the pointwise supremum of
all affine global underestimators of f. Then apply the result of exercise 3.28.

Gradient and Hessian of conjugate function. Suppose f : R™ — R is convex and twice
continuously differentiable. Suppose § and Z are related by 4 = V f(Z), and that V2 f(Z) >~
0.

(a) Show that Vf*(y) = z.
(b) Show that V2f*(g) = V2f(z)™ .

Conjgugate of negative normalized entropy. Show that the conjugate of the negative nor-

malized entropy
n

fl@) = E w;log(w:/1" ),
i=1
with dom f = R, is given by

ror-{ %, B

- +o0o  otherwise.

Quasiconvex functions

Approzimation width. Let fo,..., fn : R = R be given continuous functions. We consider
the problem of approximating fy as a linear combination of fi,..., f,. For z € R", we
say that f = z1f1 + -+ + z» fn approximates fy with tolerance ¢ > 0 over the interval
[0,T]if | f(t) — fo(t)] < efor 0 <t <T. Now we choose a fixed tolerance € > 0 and define
the approximation width as the largest T such that f approximates fo over the interval
[0,T7:

W(z) =sup{T | |z1f1(t) + -+ nfa(t) — fo(t)] < efor 0 <t < T},

Show that W is quasiconcave.

First-order condition for quasiconverzity. Prove the first-order condition for quasiconvexity
given in §3.4.3: A differentiable function f: R" — R, with dom f convex, is quasiconvex
if and only if for all z,y € dom f,

fy) < fla) = V@) (y—=) <o0.

Hint. It suffices to prove the result for a function on R; the general result follows by
restriction to an arbitrary line.

Second-order conditions for quasiconvexity. In this problem we derive alternate repre-
sentations of the second-order conditions for quasiconvexity given in §3.4.3. Prove the
following.

(a) A point z € dom f satisfies (3.21) if and only if there exists a o such that
Vif(z)+ oV f(z)Vf(z)" =o0. (3.26)
It satisfies (3.22) for all y # 0 if and only if there exists a o such
Vif(z)+ oV (2)Vf(z)" = 0. (3.27)

Hint. We can assume without loss of generality that V2 f(x) is diagonal.



122 3 Convex functions

(b) A point 2 € dom f satisfies (3.21) if and only if either Vf(z) = 0 and V?f(x) = 0,
or Vf(z) # 0 and the matrix

_ | V(@) V()

has exactly one negative eigenvalue. It satisfies (3.22) for all y # 0 if and only if
H(x) has exactly one nonpositive eigenvalue.

Hint. You can use the result of part (a). The following result, which follows from
the eigenvalue interlacing theorem in linear algebra, may also be useful: If B € S"

and a € R", then
B a
([ 2 3 ])2rm

3.45 Use the first and second-order conditions for quasiconvexity given in §3.4.3 to verify
quasiconvexity of the function f(z) = —x122, with dom f = RZ.

3.46 Quasilinear functions with domain R™. A function on R that is quasilinear (i.e., qua-
siconvex and quasiconcave) is monotone, i.e., either nondecreasing or nonincreasing. In
this problem we consider a generalization of this result to functions on R".

Suppose the function f : R™ — R is quasilinear and continuous with dom f = R"™. Show
that it can be expressed as f(z) = g(a”z), where g : R — R is monotone and ¢ € R™.
In other words, a quasilinear function with domain R"™ must be a monotone function of
a linear function. (The converse is also true.)

Log-concave and log-convex functions

3.47 Suppose f: R™ — R is differentiable, dom f is convex, and f(z) > 0 for all z € dom f.
Show that f is log-concave if and only if for all z,y € dom f,

fy) o (Vf(w)T(y—w))

fla) =P ()

3.48 Show that if f : R" — R is log-concave and a > 0, then the function g = f —a is
log-concave, where dom g = {x € dom f | f(x) > a}.
3.49 Show that the following functions are log-concave.
(a) Logistic function: f(x) =e”/(1+ e*) with dom f = R.

(b) Harmonic mean:

1 n
(¢) Product over sum:
H?, Ti n
fz) = Z?:l ool dom f=RY,.
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Coefficients of a polynomial as a function of the roots. Show that the coefficients of a
polynomial with real negative roots are log-concave functions of the roots. In other words,
the functions a; : R™ — R, defined by the identity

" ar(N)s" T o F a1 (Vs Fan(A) = (s — A1) (s — A2) - (s — An),

are log-concave on —R .
Hint. The function

Sk(z) = Z Tiy Ty« ** Tiy,,

1<iy <ig<-<ig<n
with dom S, € R and 1 < k < n, is called the kth elementary symmetric function on
R". It can be shown that S,i/k is concave (see [ML57]).

[BLOO, page 41] Let p be a polynomial on R, with all its roots real. Show that it is
log-concave on any interval on which it is positive.

[MOT9, §3.E.2] Log-convezity of moment functions. Suppose f : R — R is nonnegative
with R4 € dom f. For & > 0 define

o(x) = / " f(u) du.

Show that ¢ is a log-convex function. (If z is a positive integer, and f is a probability
density function, then ¢(z) is the zth moment of the distribution.)

Use this to show that the Gamma function,

I'(z) :/ u" e " du,
0

is log-convex for = > 1.

Suppose z and y are independent random vectors in R", with log-concave probability
density functions f and g, respectively. Show that the probability density function of the
sum z = x + y is log-concave.

Log-concavity of Gaussian cumulative distribution function. The cumulative distribution
function of a Gaussian random variable,

__L [T e
f(x)—m[we dt,

is log-concave. This follows from the general result that the convolution of two log-concave
functions is log-concave. In this problem we guide you through a simple self-contained
proof that f is log-concave. Recall that f is log-concave if and only if f”(z)f(z) < f'(z)?
for all .

(a) Verify that f”(z)f(z) < f'(z)? for x > 0. That leaves us the hard part, which is to
show the inequality for < 0.

(b) Verify that for any ¢t and 2 we have t?/2 > —x?/2 + «t.

(c) Using part (b) show that e /2 < ¢**/2=7t Conclude that, for z < 0,

/ e /2 dt<e® /2/ e~ dt.

(d) Use part (c) to verify that f(x)f(z) < f'(z)? for z < 0.
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3.55 Log-concavity of the cumulative distribution function of a log-concave probability density.
In this problem we extend the result of exercise 3.54. Let g(t) = exp(—h(t)) be a differ-
entiable log-concave probability density function, and let

f(z) = /_; g(t)dt = /_; e—h® gy

be its cumulative distribution. We will show that f is log-concave, i.e., it satisfies
f'(@)f(2) < (f'(2))? for all @
(a) Express the derivatives of f in terms of the function h. Verify that f”(z)f(z) <
(f'(2))* if I'(z) > 0.
(b) Assume that h'(z) < 0. Use the inequality
h(t) > h(x) + I (2)(t — x)
(which follows from convexity of h), to show that
@ ~h(z)
e g < £ .
oo —h(x)

Use this inequality to verify that f”(x)f(z) < (f'(z))? if ' (z) < 0.

3.56 More log-concave densities. Show that the following densities are log-concave.

(a) [MOT79, page 493] The gamma density, defined by

f(:c) — (&3 $A7167az,

with dom f = R4. The parameters A and « satisfy A > 1, a > 0.
(b) [MOT79, page 306] The Dirichlet density

n Ant1—1
_ ra’y S ;

with dom f = {z € R7, | 172 < 1}. The parameter ) satisfies A = 1.

Convexity with respect to a generalized inequality

3.57 Show that the function f(X) = X' is matrix convex on S’ .
3.58 Schur complement. Suppose X € S™ partitioned as
A B
X= { BT C } ’
where A € S*. The Schur complement of X (with respect to A) is S = C — BTA™'B

(see §A.5.5). Show that the Schur complement, viewed as a function from S™ into 8" ~*,
is matrix concave on S7 .

3.59 Second-order conditions for K-converity. Let K C R™ be a proper convex cone, with
associated generalized inequality <x. Show that a twice differentiable function f : R" —
R™, with convex domain, is K-convex if and only if for all z € dom f and all y € R",

—~ Pf(x)
8301-81]' Yi

i,j=1

i.e., the second derivative is a K-nonnegative bilinear form. (Here 8f/0z;0x; € R™,
with components 02 fy /0x;0x;, for k = 1,...,m; see §A.4.1.)
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3.60 Sublevel sets and epigraph of K-conver functions. Let K C R™ be a proper convex cone
with associated generalized inequality <k, and let f : R® — R™. For a € R™, the
a-sublevel set of f (with respect to <x) is defined as

Co ={z eR" | f(z) 2k a}.
The epigraph of f, with respect to <k, is defined as the set
epiy f = {(z.t) eR""™ | f(z) <k t}.
Show the following:

(a) If f is K-convex, then its sublevel sets C, are convex for all a.

(b) fis K-convex if and only if epiy f is a convex set.
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Chapter 4

Convex optimization problems

Optimization problems

Basic terminology

We use the notation

minimize  fo(x)
subject to  fi(z) <0, i=1,....m (4.1)
hi(x)zo, i:L...,p

to describe the problem of finding an z that minimizes fo(2) among all = that satisfy
the conditions f;(z) <0,i=1,...,m, and h;(x) =0,i=1,...,p. Wecallz € R"
the optimization variable and the function fo : R™ — R the objective function or
cost function. The inequalities f;(x) < 0 are called inequality constraints, and the
corresponding functions f; : R" — R are called the inequality constraint functions.
The equations h;(x) = 0 are called the equality constraints, and the functions
h; : R™ — R are the equality constraint functions. If there are no constraints (i.e.,
m = p = 0) we say the problem (4.1) is unconstrained.

The set of points for which the objective and all constraint functions are defined,

D= ﬁ dom f; N ﬁ dom h;,
i=0 i=1

is called the domain of the optimization problem (4.1). A point x € D is feasible
if it satisfies the constraints f;(z) < 0,4 =1,...,m, and h;(z) =0,i=1,...,p.
The problem (4.1) is said to be feasible if there exists at least one feasible point,
and infeasible otherwise. The set of all feasible points is called the feasible set or
the constraint set.

The optimal value p* of the problem (4.1) is defined as

p*=inf {fo(z) | fi(x) <0, i=1,...,m, hy(x)=0,i=1,...,p}.

We allow p* to take on the extended values +oco. If the problem is infeasible, we
have p* = oo (following the standard convention that the infimum of the empty set
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is 00). If there are feasible points zy with fo(xg) — —o0 as k — oo, then p* = —o0,
and we say the problem (4.1) is unbounded below.

Optimal and locally optimal points

We say a* is an optimal point, or solves the problem (4.1), if z* is feasible and
fo(z*) = p*. The set of all optimal points is the optimal set, denoted

Xopt ={z| fi(x) <0, i=1,...,m, hi(x) =0, i=1,...,p, fo(zr)=p"}.

If there exists an optimal point for the problem (4.1), we say the optimal value
is attained or achieved, and the problem is solvable. If X, is empty, we say
the optimal value is not attained or not achieved. (This always occurs when the
problem is unbounded below.) A feasible point z with fo(xz) < p* 4+ € (where
€ > 0) is called e-suboptimal, and the set of all e-suboptimal points is called the
e-suboptimal set for the problem (4.1).

We say a feasible point x is locally optimal if there is an R > 0 such that

folx) =inf{fo(2) | fi(z) <0, i=1,...,m,
hz(z> =0,:=1,...,p, ||Z_ Z’HQ < R}7

or, in other words, = solves the optimization problem

minimize  fp(z)

subject to  fi(2) <0, i=1,...,m
hi(z)=0, i=1,...,p
|z =zl <R

with variable z. Roughly speaking, this means x minimizes fy over nearby points
in the feasible set. The term ‘globally optimal’ is sometimes used for ‘optimal’
to distinguish between ‘locally optimal’ and ‘optimal’. Throughout this book,
however, optimal will mean globally optimal.

If x is feasible and f;(z) = 0, we say the ith inequality constraint f;(z) < 0 is
active at x. If f;(z) < 0, we say the constraint f;(x) < 0 is inactive. (The equality
constraints are active at all feasible points.) We say that a constraint is redundant
if deleting it does not change the feasible set.

Example 4.1 We illustrate these definitions with a few simple unconstrained opti-
mization problems with variable z € R, and dom fy = R4 4.

e fo(z) =1/z: p* =0, but the optimal value is not achieved.

o fo(x) = —logx: p* = —o0, so this problem is unbounded below.

e fo(x) =xlogx: p* = —1/e, achieved at the (unique) optimal point * = 1/e.

Feasibility problems

If the objective function is identically zero, the optimal value is either zero (if the
feasible set is nonempty) or oo (if the feasible set is empty). We call this the
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feasibility problem, and will sometimes write it as

find T
subject to  fi(z) <0, i=1,...,m
hi(x)=0, i=1,...,p.

The feasibility problem is thus to determine whether the constraints are consistent,
and if so, find a point that satisfies them.

Expressing problems in standard form

We refer to (4.1) as an optimization problem in standard form. In the standard
form problem we adopt the convention that the righthand side of the inequality
and equality constraints are zero. This can always be arranged by subtracting any
nonzero righthand side: we represent the equality constraint g;(x) = g;(x), for
example, as h;(x) = 0, where h;(z) = g;(z) — g;(x). In a similar way we express
inequalities of the form f;(z) > 0 as —f;(z) <0.

Example 4.2 Box constraints. Consider the optimization problem

minimize  fo(x)
subject to I; <x; <w;y, i=1,...,n,

where € R" is the variable. The constraints are called variable bounds (since they
give lower and upper bounds for each ;) or boz constraints (since the feasible set is
a box).

We can express this problem in standard form as
minimize  fo(z)
subject to l; —x; <0, i=1,...,n
T, —u; <0, 1=1,...,n.
There are 2n inequality constraint functions:

fi(a:):lif:vi, ’iZl,,..,TL,

and
fi(x) = ®i—n —Ui—n, i=n+1,...,2n.

Maximization problems

We concentrate on the minimization problem by convention. We can solve the
mazimization problem

maximize  fo(z)
subject to  fi(x) <0, i=1,...,m (4.2)
hi(x)zo, i=1,...,p
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by minimizing the function — fy subject to the constraints. By this correspondence
we can define all the terms above for the maximization problem (4.2). For example
the optimal value of (4.2) is defined as

p*:sup{fo(x) | fl(l') SO) i:]-v"'vm, hZ(SC):O, izlw“ap}a

and a feasible point z is e-suboptimal if fo(z) > p* — e. When the maximization
problem is considered, the objective is sometimes called the utility or satisfaction
level instead of the cost.

Equivalent problems

In this book we will use the notion of equivalence of optimization problems in an
informal way. We call two problems equivalent if from a solution of one, a solution
of the other is readily found, and vice versa. (It is possible, but complicated, to
give a formal definition of equivalence.)

As a simple example, consider the problem

minimize f(x) = ag fo(x)
subject to  f;(2) = a;fi(z) <0, i=1,....m (4.3)
hi(x) = Bihi(x) =

where ; > 0,7 =0,...,m,and 8; #0,i=1,...,p. This problem is obtained from
the standard form problem (4.1) by scaling the objective and inequality constraint
functions by positive constants, and scaling the equality constraint functions by
nonzero constants. As a result, the feasible sets of the problem (4.3) and the original
problem (4.1) are identical. A point x is optimal for the original problem (4.1) if
and only if it is optimal for the scaled problem (4.3), so we say the two problems are
equivalent. The two problems (4.1) and (4.3) are not, however, the same (unless
a; and B; are all equal to one), since the objective and constraint functions differ.

We now describe some general transformations that yield equivalent problems.

0, i=1,...,p,

Change of variables

Suppose ¢ : R" — R™ is one-to-one, with image covering the problem domain D,
i.e., p(dom ¢) DO D. We define functions f; and h; as

Now consider the problem

minimize  fo (2)
subject to  f;(2) <0, i=1,....,m (4.4)
hi(z):O, iZl,...,p,

with variable z. We say that the standard form problem (4.1) and the problem (4.4)
are related by the change of variable or substitution of variable x = ¢(2).

The two problems are clearly equivalent: if = solves the problem (4.1), then
2z = ¢~ Y(x) solves the problem (4.4); if z solves the problem (4.4), then z = ¢(z)
solves the problem (4.1).
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Transformation of objective and constraint functions

Suppose that ¥y : R — R is monotone increasing, ¢1,...,%, : R — R satisfy
¥i(u) < 0if and only if w <0, and Y41, ..., Ym+p : R — R satisfy 9;(u) = 0 if
and only if u = 0. We define functions f; and h; as the compositions

fix) = u(fi@), i=0,com, hi(@) = Ynpi(hi(@), i=1,...,p,
Evidently the associated problem
minimize  fo(x)

subject to fl(a:) <
hi(z) =

0, 2=1,...,m
0, 2=1,...,p

and the standard form problem (4.1) are equivalent; indeed, the feasible sets are
identical, and the optimal points are identical. (The example (4.3) above, in which
the objective and constraint functions are scaled by appropriate constants, is the
special case when all ¢); are linear.)

Example 4.3 Least-norm and least-norm-squared problems. As a simple example
consider the unconstrained Euclidean norm minimization problem

minimize ||Az — b||2, (4.5)

with variable z € R™. Since the norm is always nonnegative, we can just as well solve
the problem

minimize ||Az — b||3 = (Az — b)T (Az —b), (4.6)
in which we minimize the square of the Euclidean norm. The problems (4.5) and (4.6)
are clearly equivalent; the optimal points are the same. The two problems are not
the same, however. For example, the objective in (4.5) is not differentiable at any
x with Az — b = 0, whereas the objective in (4.6) is differentiable for all = (in fact,
quadratic).

Slack variables

One simple transformation is based on the observation that f;(z) < 0 if and only if
there is an s; > 0 that satisfies f;(z) +s; = 0. Using this transformation we obtain
the problem
minimize  fo(x)
subject to s, >0, i=1,...,m
fl(x)—I—sl:O, 1=1,...,m
hi(x) =0, i=1,...,p,

(4.7)

where the variables are x € R"™ and s € R"™. This problem has n + m variables,
m inequality constraints (the nonnegativity constraints on s;), and m + p equality
constraints. The new variable s; is called the slack variable associated with the
original inequality constraint f;(x) < 0. Introducing slack variables replaces each
inequality constraint with an equality constraint, and a nonnegativity constraint.

The problem (4.7) is equivalent to the original standard form problem (4.1).
Indeed, if (z,s) is feasible for the problem (4.7), then x is feasible for the original
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problem, since s; = —f;(x) > 0. Conversely, if x is feasible for the original problem,
then (z, s) is feasible for the problem (4.7), where we take s; = — f;(x). Similarly,
x is optimal for the original problem (4.1) if and only if (x,s) is optimal for the
problem (4.7), where s; = — f;(x).

Eliminating equality constraints

If we can explicitly parametrize all solutions of the equality constraints
hi(x)=0, i=1,...,p, (4.8)

using some parameter z € R”, then we can eliminate the equality constraints
from the problem, as follows. Suppose the function ¢ : R¥ — R" is such that
x satisfies (4.8) if and only if there is some z € R such that = ¢(z). The
optimization problem

minimize jjo(z) = fo(o(2))
subject to  fi(2) = fi(¢(2)) <0, i=1,...,m

is then equivalent to the original problem (4.1). This transformed problem has
variable z € Rk, m inequality constraints, and no equality constraints. If z is
optimal for the transformed problem, then z = ¢(z) is optimal for the original
problem. Conversely, if = is optimal for the original problem, then (since z is
feasible) there is at least one z such that = ¢(z). Any such z is optimal for the
transformed problem.

Eliminating linear equality constraints

The process of eliminating variables can be described more explicitly, and easily
carried out numerically, when the equality constraints are all linear, i.e., have the
form Az = b. If Az = b is inconsistent, i.e., b € R(A), then the original problem is
infeasible. Assuming this is not the case, let x¢ denote any solution of the equality
constraints. Let F € R™ " be any matrix with R(F) = N(A), so the general
solution of the linear equations Az = b is given by F'z + x(, where z € R”. (We
can choose F' to be full rank, in which case we have k = n — rank A.)
Substituting * = Fz 4 x¢ into the original problem yields the problem

minimize  fo(Fz + x0)
subject to  fi(Fz+x) <0, i=1,...,m,

with variable z, which is equivalent to the original problem, has no equality con-
straints, and rank A fewer variables.

Introducing equality constraints

We can also introduce equality constraints and new variables into a problem. In-
stead of describing the general case, which is complicated and not very illuminating,
we give a typical example that will be useful later. Consider the problem

minimize  fo(Aoz + bo)
subject to  fi(Ajx +b;) <0, i=1,....m
hl(x):O7 izla"'ap7
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where z € R", A; € R¥*" and f; : R¥ — R. In this problem the objective
and constraint functions are given as compositions of the functions f; with affine
transformations defined by A;z + b;.

We introduce new variables y; € R¥", as well as new equality constraints y; =
Az + b, for i =0,...,m, and form the equivalent problem

minimize  fo(yo)

subject to  fi(y;) <0, i=1,...,m
vy =Ax+b;, i=0,...,m
hi(x)zo, iZl,...,p.

This problem has kg + - - - 4+ k,,, new variables,
Yo ERkO, ceey Um Eka,
and kg + - -+ + k,, new equality constraints,
Yo = Aox + by, ..., Ym = ApnT + by

The objective and inequality constraints in this problem are independent, i.e., in-
volve different optimization variables.

Optimizing over some variables

We always have .
inf f(z,y) = inf f(z)
T,y T

where f (z) = inf, f(z,y). In other words, we can always minimize a function by
first minimizing over some of the variables, and then minimizing over the remaining
ones. This simple and general principle can be used to transform problems into
equivalent forms. The general case is cumbersome to describe and not illuminating,
so we describe instead an example.

Suppose the variable x € R" is partitioned as z = (z1,22), with ; € R™,
To € R™, and n; + ny = n. We consider the problem

minimize  fo(z1,22)
subject to  fi(xz1) <0, i=1,...,m (4.9)
fi(xQ)SO, i=1,...,m2,

in which the constraints are independent, in the sense that each constraint function
depends on x7 or xo. We first minimize over xo. Define the function fy of 1 by

fo(l‘l) = il’lf{fo(l‘l,z) | ﬁ(z) < 0, 1= 1, ce ,mg}.
The problem (4.9) is then equivalent to

minimize  fo(z1)

subject to  fi(z1) <0, i=1,...,my. (4.10)
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Example 4.4 Minimizing a quadratic function with constraints on some variables.
Consider a problem with strictly convex quadratic objective, with some of the vari-
ables unconstrained:

minimize xlTanl + ZmlTPlgwg + IQTszatz
subject to  fi(z1) <0, ¢=1,...,m,

where P11 and Ps2 are symmetric. Here we can analytically minimize over x2:

inf (:L‘fplll'l =+ 212?]312122 + $5P22$2) = CC{ (Pll — P12P231P1€) T
T2

(see §A.5.5). Therefore the original problem is equivalent to

minimize xlT (PH — P12P231P17;) T
subject to  fi(z1) <0, i=1,...,m.

Epigraph problem form
The epigraph form of the standard problem (4.1) is the problem

minimize ¢

subject to  fo(z) —t <0
filx) <0, i=1,...,m (4.11)
hi(.’[?):O, iZl,...7p,

with variables z € R"™ and t € R. We can easily see that it is equivalent to the
original problem: (z,t) is optimal for (4.11) if and only if x is optimal for (4.1)
and t = fo(z). Note that the objective function of the epigraph form problem is a
linear function of the variables x, t.

The epigraph form problem (4.11) can be interpreted geometrically as an op-
timization problem in the ‘graph space’ (x,t): we minimize ¢ over the epigraph of
fo, subject to the constraints on z. This is illustrated in figure 4.1.

Implicit and explicit constraints

By a simple trick already mentioned in §3.1.2, we can include any of the constraints
implicitly in the objective function, by redefining its domain. As an extreme ex-
ample, the standard form problem can be expressed as the unconstrained problem

minimize F(z), (4.12)

where we define the function F' as fy, but with domain restricted to the feasible
set:

domF ={zx €domfy | fi(x) <0, i=1,...,m, hy(x) =0, i=1,...,p},

and F(z) = fo(x) for z € dom F'. (Equivalently, we can define F'(x) to have value
oo for = not feasible.) The problems (4.1) and (4.12) are clearly equivalent: they
have the same feasible set, optimal points, and optimal value.

Of course this transformation is nothing more than a notational trick. Making
the constraints implicit has not made the problem any easier to analyze or solve,
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epi fo

(%, %)

Figure 4.1 Geometric interpretation of epigraph form problem, for a prob-
lem with no constraints. The problem is to find the point in the epigraph
(shown shaded) that minimizes ¢, i.e., the ‘lowest’ point in the epigraph.
The optimal point is (z*,t*).

even though the problem (4.12) is, at least nominally, unconstrained. In some ways
the transformation makes the problem more difficult. Suppose, for example, that
the objective fy in the original problem is differentiable, so in particular its domain
is open. The restricted objective function F' is probably not differentiable, since
its domain is likely not to be open.

Conversely, we will encounter problems with implicit constraints, which we can
then make explicit. As a simple example, consider the unconstrained problem

minimize f(x) (4.13)

where the function f is given by

f(x):{ T Az =b

00 otherwise.

Thus, the objective function is equal to the quadratic form z”x on the affine set

defined by Az = b, and oo off the affine set. Since we can clearly restrict our
attention to points that satisfy Az = b, we say that the problem (4.13) has an
implicit equality constraint Ax = b hidden in the objective. We can make the
implicit equality constraint explicit, by forming the equivalent problem

minimize zTx

subject to Az =b. (4.14)

While the problems (4.13) and (4.14) are clearly equivalent, they are not the same.
The problem (4.13) is unconstrained, but its objective function is not differentiable.
The problem (4.14), however, has an equality constraint, but its objective and
constraint functions are differentiable.
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4.1.4

4.2

4.2.1

Parameter and oracle problem descriptions

For a problem in the standard form (4.1), there is still the question of how the
objective and constraint functions are specified. In many cases these functions
have some analytical or closed form, i.e., are given by a formula or expression that
involves the variable z as well as some parameters. Suppose, for example, the
objective is quadratic, so it has the form fo(x) = (1/2)2T Pz + ¢Tx +r. To specify
the objective function we give the coefficients (also called problem parameters or
problem data) P € S", ¢ € R", and r € R. We call this a parameter problem
description, since the specific problem to be solved (i.e., the problem instance) is
specified by giving the values of the parameters that appear in the expressions for
the objective and constraint functions.

In other cases the objective and constraint functions are described by oracle
models (which are also called black box or subroutine models). In an oracle model,
we do not know f explicitly, but can evaluate f(z) (and usually also some deriva-
tives) at any « € dom f. This is referred to as querying the oracle, and is usually
associated with some cost, such as time. We are also given some prior information
about the function, such as convexity and a bound on its values. As a concrete
example of an oracle model, consider an unconstrained problem, in which we are
to minimize the function f. The function value f(z) and its gradient V f(x) are
evaluated in a subroutine. We can call the subroutine at any x € dom f, but do
not have access to its source code. Calling the subroutine with argument z yields
(when the subroutine returns) f(z) and Vf(z). Note that in the oracle model,
we never really know the function; we only know the function value (and some
derivatives) at the points where we have queried the oracle. (We also know some
given prior information about the function, such as differentiability and convexity.)

In practice the distinction between a parameter and oracle problem description
is not so sharp. If we are given a parameter problem description, we can construct
an oracle for it, which simply evaluates the required functions and derivatives when
queried. Most of the algorithms we study in part III work with an oracle model, but
can be made more efficient when they are restricted to solve a specific parametrized
family of problems.

Convex optimization

Convex optimization problems in standard form

A convex optimization problem is one of the form

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m (4.15)
alz=b;, i=1,...,p,
where fo, ..., fm are convex functions. Comparing (4.15) with the general standard
form problem (4.1), the convex problem has three additional requirements:
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e the objective function must be convex,

e the inequality constraint functions must be convex,

T

e the equality constraint functions h;(z) = a; @ — b; must be affine.

We immediately note an important property: The feasible set of a convex optimiza-
tion problem is convex, since it is the intersection of the domain of the problem

D= ﬁ dom f;,
i=0

which is a convex set, with m (convex) sublevel sets {z | f;(x) < 0} and p hyper-
planes {z | alx = b;}. (We can assume without loss of generality that a; # 0: if
a; = 0 and b; = 0 for some 4, then the ith equality constraint can be deleted; if
a; = 0 and b; # 0, the ith equality constraint is inconsistent, and the problem is in-
feasible.) Thus, in a convex optimization problem, we minimize a convex objective
function over a convex set.

If fy is quasiconvex instead of convex, we say the problem (4.15) is a (standard
form) quasiconvexr optimization problem. Since the sublevel sets of a convex or
quasiconvex function are convex, we conclude that for a convex or quasiconvex
optimization problem the e-suboptimal sets are convex. In particular, the optimal
set is convex. If the objective is strictly convex, then the optimal set contains at
most one point.

Concave maximization problems

With a slight abuse of notation, we will also refer to

maximize  fo(z)
subject to  fi(z) <0, i=1,...,m (4.16)
afz=b;, i=1,...,p,

as a convex optimization problem if the objective function fj is concave, and the
inequality constraint functions fi,..., f;, are convex. This concave maximization
problem is readily solved by minimizing the convex objective function —fy. All
of the results, conclusions, and algorithms that we describe for the minimization
problem are easily transposed to the maximization case. In a similar way the
maximization problem (4.16) is called quasiconvex if fy is quasiconcave.

Abstract form convex optimization problem

It is important to note a subtlety in our definition of convex optimization problem.
Consider the example with = € R?,

minimize  fo(z) = ={ + 23
subject to  fi(z) =z1/(1+23) <0 (4.17)
hy (JJ) = (.231 + .132)2 =0,

which is in the standard form (4.1). This problem is not a convex optimization
problem in standard form since the equality constraint function h; is not affine, and
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the inequality constraint function f; is not convex. Nevertheless the feasible set,
which is {z | 1 <0, x1 + 22 = 0}, is convex. So although in this problem we are
minimizing a convex function fy over a convex set, it is not a convex optimization
problem by our definition.

Of course, the problem is readily reformulated as

minimize  fo(z) = 27 + 23
subject to  fi(z) =21 <0 (4.18)
hi(z) = x1 + x2 =0,

which is in standard convex optimization form, since fy and fl are convex, and ha
is affine.

Some authors use the term abstract convex optimization problem to describe the
(abstract) problem of minimizing a convex function over a convex set. Using this
terminology, the problem (4.17) is an abstract convex optimization problem. We
will not use this terminology in this book. For us, a convex optimization problem is
not just one of minimizing a convex function over a convex set; it is also required
that the feasible set be described specifically by a set of inequalities involving
convex functions, and a set of linear equality constraints. The problem (4.17) is
not a convex optimization problem, but the problem (4.18) is a convex optimization
problem. (The two problems are, however, equivalent.)

Our adoption of the stricter definition of convex optimization problem does not
matter much in practice. To solve the abstract problem of minimizing a convex
function over a convex set, we need to find a description of the set in terms of
convex inequalities and linear equality constraints. As the example above suggests,
this is usually straightforward.

Local and global optima

A fundamental property of convex optimization problems is that any locally optimal
point is also (globally) optimal. To see this, suppose that « is locally optimal for
a convex optimization problem, i.e., x is feasible and

fo(x) =inf{fo(z) | z feasible, ||z — x|z < R}, (4.19)

for some R > 0. Now suppose that x is not globally optimal, i.e., there is a feasible
y such that fo(y) < fo(z). Evidently |y — z[|2 > R, since otherwise fo(x) < fo(y).
Consider the point z given by
R
z=(1—-0)x+ 0y, 0= ———.
=0 2yl

Then we have ||z — z|l2 = R/2 < R, and by convexity of the feasible set, z is
feasible. By convexity of fy we have

Jo(z) < (1 =0)fo(x) + 0fo(y) < fo(),

which contradicts (4.19). Hence there exists no feasible y with fo(y) < fo(2), i.e.,
x is globally optimal.
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Figure 4.2 Geometric interpretation of the optimality condition (4.21). The
feasible set X is shown shaded. Some level curves of fy are shown as dashed
lines. The point x is optimal: —V fo(z) defines a supporting hyperplane
(shown as a solid line) to X at z.

It is not true that locally optimal points of quasiconvex optimization problems
are globally optimal; see §4.2.5.

An optimality criterion for differentiable f,

Suppose that the objective fy in a convex optimization problem is differentiable,
so that for all z,y € dom fj,

foly) = fo(@) + Vfol2)" (y — ) (4.20)
(see §3.1.3). Let X denote the feasible set, i.e.,
X={z] fi(x)<0,i=1,...,m, hy(z) =0, i=1,...,p}.
Then z is optimal if and only if z € X and
Vio(x) ' (y —x) >0 for all y € X. (4.21)

This optimality criterion can be understood geometrically: If V fo(x) # 0, it means
that —V fo(z) defines a supporting hyperplane to the feasible set at = (see fig-
ure 4.2).

Proof of optimality condition

First suppose € X and satisfies (4.21). Then if y € X we have, by (4.20),
fo(y) > fo(x). This shows z is an optimal point for (4.1).
Conversely, suppose x is optimal, but the condition (4.21) does not hold, i.e.,
for some y € X we have
Vfo(z)" (y — =) <0.



140

4 Convex optimization problems

Counsider the point z(t) = ty+ (1 —t)x, where t € [0, 1] is a parameter. Since z(t) is
on the line segment between x and y, and the feasible set is convex, z(t) is feasible.
We claim that for small positive ¢ we have fo(z(t)) < fo(x), which will prove that
x is not optimal. To show this, note that

d

ZhGE®)|  =Vio(@) (y-2) <0,

t=0
so for small positive ¢, we have fy(2(t)) < fo(z).

We will pursue the topic of optimality conditions in much more depth in chap-
ter 5, but here we examine a few simple examples.

Unconstrained problems

For an unconstrained problem (i.e., m = p = 0), the condition (4.21) reduces to
the well known necessary and sufficient condition

Vfo(z) =0 (4.22)

for = to be optimal. While we have already seen this optimality condition, it is
useful to see how it follows from (4.21). Suppose z is optimal, which means here
that © € dom fy, and for all feasible y we have V fo(x)? (y — x) > 0. Since fo is
differentiable, its domain is (by definition) open, so all y sufficiently close to x are
feasible. Let us take y = x —tV fo(x), where ¢ € R is a parameter. For ¢ small and
positive, y is feasible, and so

Viol2)"(y - 2) = ~t|Vfo(2)]3 > 0,

from which we conclude V fo(x) = 0.

There are several possible situations, depending on the number of solutions
of (4.22). If there are no solutions of (4.22), then there are no optimal points; the
optimal value of the problem is not attained. Here we can distinguish between
two cases: the problem is unbounded below, or the optimal value is finite, but not
attained. On the other hand we can have multiple solutions of the equation (4.22),
in which case each such solution is a minimizer of fy.

Example 4.5 Unconstrained quadratic optimization. Consider the problem of mini-
mizing the quadratic function

folz) = (1/2)ZETP:E + qTx + 7,

where P € S} (which makes fo convex). The necessary and sufficient condition for
x to be a minimizer of fy is

Vfo(z) = Pxr+q=0.

Several cases can occur, depending on whether this (linear) equation has no solutions,
one solution, or many solutions.
o If ¢ ¢ R(P), then there is no solution. In this case fy is unbounded below.

e If P > 0 (which is the condition for fy to be strictly convex), then there is a
unique minimizer, 2* = —P™'q.
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e If P is singular, but ¢ € R(P), then the set of optimal points is the (affine) set
Xopt = —PTq+ N(P), where P denotes the pseudo-inverse of P (see §A.5.4).

Example 4.6 Analytic centering. Consider the (unconstrained) problem of minimiz-
ing the (convex) function fo: R" — R, defined as

folz) = — Zlog(bi —alz), dom fo = {z | Az < b},
i=1

where af, ..., aL are the rows of A. The function fo is differentiable, so the necessary
and sufficient conditions for x to be optimal are

< 1
Az <b, Vo) =) i =0. (4.23)
i=1

(The condition Az < b is just = € dom fo.) If Az < b is infeasible, then the domain
of fo is empty. Assuming Az < b is feasible, there are still several possible cases (see
exercise 4.2):

e There are no solutions of (4.23), and hence no optimal points for the problem.
This occurs if and only if fo is unbounded below.

e There are many solutions of (4.23). In this case it can be shown that the
solutions form an affine set.

e There is a unique solution of (4.23), i.e., a unique minimizer of fo. This occurs
if and only if the open polyhedron {z | Az < b} is nonempty and bounded.

Problems with equality constraints only

Consider the case where there are equality constraints but no inequality constraints,
i.e.,

minimize  fo(x)

subject to Az =b.

Here the feasible set is affine. We assume that it is nonempty; otherwise the
problem is infeasible. The optimality condition for a feasible x is that

Vo) (y—2) 20

must hold for all y satisfying Ay = b. Since x is feasible, every feasible y has the
form y = z + v for some v € N(A). The optimality condition can therefore be
expressed as:

Vfo(z) v >0 for all v € N'(A).

If a linear function is nonnegative on a subspace, then it must be zero on the
subspace, so it follows that V fo(z)Tv = 0 for all v € N'(A4). In other words,

Vfo(z) L N(A).
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Using the fact that N(A)* = R(AT), this optimality condition can be expressed
as Vfo(z) € R(AT), i.e., there exists a v € RP such that

Vio(z)+ ATv =0.

Together with the requirement Ax = b (i.e., that x is feasible), this is the classical
Lagrange multiplier optimality condition, which we will study in greater detail in
chapter 5.

Minimization over the nonnegative orthant
As another example we consider the problem

minimize  fo(z)
subject to xz = 0,

where the only inequality constraints are nonnegativity constraints on the variables.
The optimality condition (4.21) is then

x =0, Vfo(x)T(y —x) >0 for all y = 0.

The term V fo(z)Ty, which is a linear function of y, is unbounded below on y = 0,
unless we have V fo(z) = 0. The condition then reduces to —V fo(z)Tx > 0. But
x = 0and Vfy(x) = 0, so we must have V fo(z)Tx =0, i.e.,

n

> (Vfo(x))izi =0.

i=1

Now each of the terms in this sum is the product of two nonnegative numbers, so
we conclude that each term must be zero, i.e., (Vfo(x)),z; =0fori=1,... n.
The optimality condition can therefore be expressed as

x = 0, V fo(z) = 0, z; (Vfo(x)), =0, i=1,...,n.

The last condition is called complementarity, since it means that the sparsity pat-
terns (i.e., the set of indices corresponding to nonzero components) of the vectors x
and V fo(z) are complementary (i.e., have empty intersection). We will encounter
complementarity conditions again in chapter 5.

Equivalent convex problems

It is useful to see which of the transformations described in §4.1.3 preserve convex-
ity.
Eliminating equality constraints

For a convex problem the equality constraints must be linear, i.e., of the form
Az = b. In this case they can be eliminated by finding a particular solution xq of
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Ax = b, and a matrix F' whose range is the nullspace of A, which results in the
problem

minimize  fo(Fz + o)

subject to  fi(Fz+xz9) <0, i=1,...,m,

with variable z. Since the composition of a convex function with an affine func-
tion is convex, eliminating equality constraints preserves convexity of a problem.
Moreover, the process of eliminating equality constraints (and reconstructing the
solution of the original problem from the solution of the transformed problem)
involves standard linear algebra operations.

At least in principle, this means we can restrict our attention to convex opti-
mization problems which have no equality constraints. In many cases, however, it
is better to retain the equality constraints, since eliminating them can make the
problem harder to understand and analyze, or ruin the efficiency of an algorithm
that solves it. This is true, for example, when the variable x has very large dimen-
sion, and eliminating the equality constraints would destroy sparsity or some other
useful structure of the problem.

Introducing equality constraints

We can introduce new variables and equality constraints into a convex optimization
problem, provided the equality constraints are linear, and the resulting problem
will also be convex. For example, if an objective or constraint function has the form
fi(Aixz+b;), where A; € R**" we can introduce a new variable y; € R*, replace
fi(A;x 4+ b;) with f;(y;), and add the linear equality constraint y; = A;x + b;.

Slack variables

By introducing slack variables we have the new constraints f;(xz) 4+ s; = 0. Since
equality constraint functions must be affine in a convex problem, we must have f;
affine. In other words: introducing slack variables for linear inequalities preserves
convexity of a problem.

Epigraph problem form

The epigraph form of the convex optimization problem (4.15) is

minimize ¢

subject to  fo(x) —t <0
f?(I)SO7 iil,...,m
alz=b;, i=1,...,p.

The objective is linear (hence convex) and the new constraint function fo(z) —¢ is
also convex in (x,t), so the epigraph form problem is convex as well.

It is sometimes said that a linear objective is universal for convex optimization,
since any convex optimization problem is readily transformed to one with linear
objective. The epigraph form of a convex problem has several practical uses. By
assuming the objective of a convex optimization problem is linear, we can simplify
theoretical analysis. It can also simplify algorithm development, since an algo-
rithm that solves convex optimization problems with linear objective can, using
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the transformation above, solve any convex optimization problem (provided it can
handle the constraint fo(z) — ¢ < 0).
Minimizing over some variables

Minimizing a convex function over some variables preserves convexity. Therefore,
if fo in (4.9) is jointly convex in z7 and xo, and f;, ¢ = 1,...,mq, and f;, i =
1,...,mq, are convex, then the equivalent problem (4.10) is convex.

Quasiconvex optimization

Recall that a quasiconvex optimization problem has the standard form

minimize  fo(x)

subject to  fi(z) <0, i=1,...,m (4.24)
Ax = b,
where the inequality constraint functions fi, ..., f,, are convex, and the objective

fo is quasiconvex (instead of convex, as in a convex optimization problem). (Qua-
siconvex constraint functions can be replaced with equivalent convex constraint
functions, i.e., constraint functions that are convex and have the same 0-sublevel
set, as in §3.4.5.)

In this section we point out some basic differences between convex and quasicon-
vex optimization problems, and also show how solving a quasiconvex optimization
problem can be reduced to solving a sequence of convex optimization problems.

Locally optimal solutions and optimality conditions

The most important difference between convex and quasiconvex optimization is
that a quasiconvex optimization problem can have locally optimal solutions that
are not (globally) optimal. This phenomenon can be seen even in the simple case
of unconstrained minimization of a quasiconvex function on R, such as the one
shown in figure 4.3.

Nevertheless, a variation of the optimality condition (4.21) given in §4.2.3 does
hold for quasiconvex optimization problems with differentiable objective function.
Let X denote the feasible set for the quasiconvex optimization problem (4.24). It
follows from the first-order condition for quasiconvexity (3.20) that x is optimal if

z e X, Vio(x)T(y—x)>0forally e X\ {z}. (4.25)

There are two important differences between this criterion and the analogous
one (4.21) for convex optimization:

e The condition (4.25) is only sufficient for optimality; simple examples show
that it need not hold for an optimal point. In contrast, the condition (4.21)
is necessary and sufficient for x to solve the convex problem.

e The condition (4.25) requires the gradient of fy to be nonzero, whereas the
condition (4.21) does not. Indeed, when V fo(z) = 0 in the convex case, the
condition (4.21) is satisfied, and « is optimal.
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Figure 4.3 A quasiconvex function f on R, with a locally optimal point x
that is not globally optimal. This example shows that the simple optimality
condition f’(z) = 0, valid for convex functions, does not hold for quasiconvex
functions.

Quasiconvex optimization via convex feasibility problems

One general approach to quasiconvex optimization relies on the representation of
the sublevel sets of a quasiconvex function via a family of convex inequalities, as
described in §3.4.5. Let ¢; : R"™ — R, t € R, be a family of convex functions that
satisfy

folw) <t <= 6u(z) <0,

and also, for each z, ¢;(x) is a nonincreasing function of ¢, i.e., ¢s(x) < ¢ (x)
whenever s > t.

Let p* denote the optimal value of the quasiconvex optimization problem (4.24).
If the feasibility problem

find

x
subject to  ¢¢(z) <0 (4.26)

is feasible, then we have p* < ¢. Conversely, if the problem (4.26) is infeasible, then
we can conclude p* > ¢t. The problem (4.26) is a convex feasibility problem, since
the inequality constraint functions are all convex, and the equality constraints
are linear. Thus, we can check whether the optimal value p* of a quasiconvex
optimization problem is less than or more than a given value ¢ by solving the
convex feasibility problem (4.26). If the convex feasibility problem is feasible then
we have p* < t, and any feasible point x is feasible for the quasiconvex problem
and satisfies fo(x) < t. If the convex feasibility problem is infeasible, then we know
that p* > t.

This observation can be used as the basis of a simple algorithm for solving the
quasiconvex optimization problem (4.24) using bisection, solving a convex feasi-
bility problem at each step. We assume that the problem is feasible, and start
with an interval [I,u] known to contain the optimal value p*. We then solve the
convex feasibility problem at its midpoint ¢ = (I + u)/2, to determine whether the
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optimal value is in the lower or upper half of the interval, and update the interval
accordingly. This produces a new interval, which also contains the optimal value,
but has half the width of the initial interval. This is repeated until the width of
the interval is small enough:

Algorithm 4.1 Bisection method for quasiconvex optimization.

given [ < p*, u > p*, tolerance € > 0.
repeat
1. t:=(+u)/2.
2. Solve the convex feasibility problem (4.26).
3. if (4.20) is feasible, u :=1¢; elsel:=t.
until v — [ <e.

The interval [I,u] is guaranteed to contain p*, i.e., we have | < p* < w at
each step. In each iteration the interval is divided in two, i.e., bisected, so the
length of the interval after k iterations is 27%(u — ), where u — [ is the length of
the initial interval. It follows that exactly [log,((u —1)/€)] iterations are required
before the algorithm terminates. Each step involves solving the convex feasibility
problem (4.26).

Linear optimization problems

When the objective and constraint functions are all affine, the problem is called a
linear program (LP). A general linear program has the form

minimize c¢fz +d
subject to Gz = h (4.27)
Ax = b,

where G € R™*™ and A € RP*". Linear programs are, of course, convex opti-
mization problems.

It is common to omit the constant d in the objective function, since it does not
affect the optimal (or feasible) set. Since we can maximize an affine objective ¢’z +
d, by minimizing —cTz — d (which is still convex), we also refer to a maximization
problem with affine objective and constraint functions as an LP.

The geometric interpretation of an LP is illustrated in figure 4.4. The feasible
set of the LP (4.27) is a polyhedron P; the problem is to minimize the affine
function ¢’z + d (or, equivalently, the linear function ¢’'z) over P.

Standard and inequality form linear programs

Two special cases of the LP (4.27) are so widely encountered that they have been
given separate names. In a standard form LP the only inequalities are componen-
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Figure 4.4 Geometric interpretation of an LP. The feasible set P, which
is a polyhedron, is shaded. The objective ¢’ is linear, so its level curves
are hyperplanes orthogonal to ¢ (shown as dashed lines). The point x* is
optimal; it is the point in P as far as possible in the direction —c.

twise nonnegativity constraints x > 0:

minimize Tz
subject to Az =10 (4.28)
x > 0.

If the LP has no equality constraints, it is called an inequality form LP, usually
written as
minimize ¢’z

subject to Az <b. (429)

Converting LPs to standard form

Tt is sometimes useful to transform a general LP (4.27) to one in standard form (4.28)
(for example in order to use an algorithm for standard form LPs). The first step
is to introduce slack variables s; for the inequalities, which results in

minimize ¢Tx +d
subject to Gx+s=nh
Ar =D
s> 0.

The second step is to express the variable z as the difference of two nonnegative
variables z+ and 7, i.e., x = ¥ — 27, 2%, 2= = 0. This yields the problem

minimize ¢Tat —cTz™ +d
subject to Gaxt — Gz~ +s=h
Azt —Az— =b
x>0, 2= =0, s>=0,
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which is an LP in standard form, with variables 2, 7, and s. (For equivalence
of this problem and the original one (4.27), see exercise 4.10.)

These techniques for manipulating problems (along with many others we will
see in the examples and exercises) can be used to formulate many problems as linear
programs. With some abuse of terminology, it is common to refer to a problem
that can be formulated as an LP as an LP, even if it does not have the form (4.27).

Examples

LPs arise in a vast number of fields and applications; here we give a few typical
examples.

Diet problem

A healthy diet contains m different nutrients in quantities at least equal to by, ...,
bm. We can compose such a diet by choosing nonnegative quantities x1, ..., x, of
n different foods. One unit quantity of food j contains an amount a;; of nutrient
i, and has a cost of ¢c;. We want to determine the cheapest diet that satisfies the
nutritional requirements. This problem can be formulated as the LP

minimize Tz
subject to Az = b

x > 0.

Several variations on this problem can also be formulated as LPs. For example,
we can insist on an exact amount of a nutrient in the diet (which gives a linear
equality constraint), or we can impose an upper bound on the amount of a nutrient,
in addition to the lower bound as above.

Chebyshev center of a polyhedron

We consider the problem of finding the largest Euclidean ball that lies in a poly-
hedron described by linear inequalities,

P={zcR"|al2<b;, i=1,...,m}.

(The center of the optimal ball is called the Chebyshev center of the polyhedron;
it is the point deepest inside the polyhedron, i.e., farthest from the boundary;
see §8.5.1.) We represent the ball as

B={zc+ullulls <r}.

The variables in the problem are the center z. € R™ and the radius r; we wish to
maximize r subject to the constraint B C P.
We start by considering the simpler constraint that B lies in one halfspace
aiT:v < b;, t.e.,
lulls <7 = al(z. 4+ u) < b;. (4.30)

Since
sup{af u | [Julla <r} = rllai2
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we can write (4.30) as
alze +rlags < bi, (4.31)
which is a linear inequality in z. and r. In other words, the constraint that the
ball lies in the halfspace determined by the inequality alx < b; can be written as
a linear inequality.
Therefore B C P if and only if (4.31) holds for all ¢ = 1,...,m. Hence the
Chebyshev center can be determined by solving the LP

maximize 7
subject to  alx. +rlailla <bi, i=1,...,m,

with variables r and z.. (For more on the Chebyshev center, see §8.5.1.)

Dynamic activity planning

We consider the problem of choosing, or planning, the activity levels of n activities,
or sectors of an economy, over N time periods. We let z;(t) > 0, ¢ =1,...,N,
denote the activity level of sector j, in period t. The activities both consume and
produce products or goods in proportion to their activity levels. The amount of
good 7 produced per unit of activity j is given by a;;. Similarly, the amount of good ¢
consumed per unit of activity j is b;;. The total amount of goods produced in period
t is given by Axz(t) € R™, and the amount of goods consumed is Bz(t) € R™.
(Although we refer to these products as ‘goods’; they can also include unwanted
products such as pollutants.)

The goods consumed in a period cannot exceed those produced in the previous
period: we must have Bz(t + 1) < Ax(t) for t =1,...,N. A vector go € R™ of
initial goods is given, which constrains the first period activity levels: Bxz(1) < go.
The (vectors of) excess goods not consumed by the activities are given by

s(0) = go— Bax(1)
s(t) = Ax(t)—Bxz(t+1), t=1,...,N—-1
s(N) = Azx(N).

The objective is to maximize a discounted total value of excess goods:
Ts(0) +vet's(1) + - + Nl s(N),

where ¢ € R gives the values of the goods, and v > 0 is a discount factor. (The
value ¢; is negative if the ith product is unwanted, e.g., a pollutant; |¢;| is then the
cost of disposal per unit.)

Putting it all together we arrive at the LP

maximize ¢’'s(0) + WcTs(l) + -+ yNeTs(N)

subject to z(t) =0, t=1,...,N
s(t) =0, t=0,. N
5(0) =go—B$( )
s(t) = Az(t) — Bzx(t+1), t=1,...,N—-1
(N)=A33( );

with variables z(1),...,z(N), s(0),...,s(N). This problem is a standard form LP;
the variables s(¢) are the slack variables associated with the constraints Bxz(t+1) =
Ax(t).
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Chebyshev inequalities

We consider a probability distribution for a discrete random variable x on a set
{u1,...,un} € R with n elements. We describe the distribution of x by a vector
p € R", where

p; = prob(z = u;),

so p satisfies p = 0 and 17p = 1. Conversely, if p satisfies p = 0 and 17p = 1, then
it defines a probability distribution for z. We assume that u; are known and fixed,
but the distribution p is not known.

If f is any function of x, then

Ef=> pif(w)
i=1

is a linear function of p. If S is any subset of R, then

prob(z € §) = Z Di

u, ES

is a linear function of p.

Although we do not know p, we are given prior knowledge of the following form:
We know upper and lower bounds on expected values of some functions of x, and
probabilities of some subsets of R. This prior knowledge can be expressed as linear
inequality constraints on p,

T .
aigaipgﬁia i=1,...,m.

The problem is to give lower and upper bounds on E fo(z) = al'p, where fq is some
function of x.
To find a lower bound we solve the LP
minimize alp
subject to p>=0, 1Tp=1
a; <alp<pBi i=1,...,m,

with variable p. The optimal value of this LP gives the lowest possible value of
E fo(X) for any distribution that is consistent with the prior information. More-
over, the bound is sharp: the optimal solution gives a distribution that is consistent
with the prior information and achieves the lower bound. In a similar way, we can
find the best upper bound by maximizing al p subject to the same constraints. (We
will consider Chebyshev inequalities in more detail in §7.4.1.)

Piecewise-linear minimization

Consider the (unconstrained) problem of minimizing the piecewise-linear, convex
function
f(x) = max (alz+b).
i=1,...,m

This problem can be transformed to an equivalent LP by first forming the epigraph
problem,

minimize ¢

subject to maxi:L,__,m(alTx +b;) <t,
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and then expressing the inequality as a set of m separate inequalities:
minimize ¢
subject to alx+b; <t, i=1,...,m.

This is an LP (in inequality form), with variables = and ¢.

Linear-fractional programming

The problem of minimizing a ratio of affine functions over a polyhedron is called a
linear-fractional program:

minimize  fy(z)

subject to Gz <X h (4.32)
Az =1
where the objective function is given by
T
cr+d T
fo(l‘):m, domf0:{$|€ J?+f>0}

The objective function is quasiconvex (in fact, quasilinear) so linear-fractional pro-
grams are quasiconvex optimization problems.

Transforming to a linear program

If the feasible set
{z |Gz <h, Az =0b, T2+ f > 0}

is nonempty, the linear-fractional program (4.32) can be transformed to an equiv-
alent linear program
minimize ¢’y + dz
subject to Gy — hz <0
Ay —bz=0 (4.33)
eTy+ fz=1
z>0
with variables y, z.
To show the equivalence, we first note that if = is feasible in (4.32) then the
pair
T _ 1
eTo+ f Z_eTa:+f
is feasible in (4.33), with the same objective value Ty +dz = fo(x). It follows that
the optimal value of (4.32) is greater than or equal to the optimal value of (4.33).
Conversely, if (y, z) is feasible in (4.33), with z # 0, then x = y/z is feasible
in (4.32), with the same objective value fo(x) = Ty + dz. If (y,z) is feasible
in (4.33) with z = 0, and =z is feasible for (4.32), then & = zg + ty is feasible
in (4.32) for all ¢ > 0. Moreover, lim;_,o fo(7o + ty) = ¢’y + dz, so we can find
feasible points in (4.32) with objective values arbitrarily close to the objective value
of (y,z). We conclude that the optimal value of (4.32) is less than or equal to the
optimal value of (4.33).

y:
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Generalized linear-fractional programming

A generalization of the linear-fractional program (4.32) is the generalized linear-
fractional program in which

e ={z|efz+f; =1,...,r}.
iiﬁlﬁfre;m+fi7 omfo={zx|elx+f;>0,i=1,...,7}

Jolz) =
The objective function is the pointwise maximum of r quasiconvex functions, and
therefore quasiconvex, so this problem is quasiconvex. When r = 1 it reduces to
the standard linear-fractional program.

Example 4.7 Von Neumann growth problem. We consider an economy with n
sectors, and activity levels ; > 0 in the current period, and activity levels :rj' > 0in
the next period. (In this problem we only consider one period.) There are m goods
which are consumed, and also produced, by the activity: An activity level x consumes
goods Bx € R™, and produces goods Az. The goods consumed in the next period
cannot exceed the goods produced in the current period, i.e., Bx™ < Az. The growth
rate in sector ¢, over the period, is given by xj/xl

Von Neumann’s growth problem is to find an activity level vector x that maximizes
the minimum growth rate across all sectors of the economy. This problem can be
expressed as a generalized linear-fractional problem

maximize minj—1i, . n xj'/xz
subject to zT >0
BxT < Az

with domain {(z,z") | # = 0}. Note that this problem is homogeneous in z and z*,
so we can replace the implicit constraint « > 0 by the explicit constraint > 1.

Quadratic optimization problems

The convex optimization problem (4.15) is called a quadratic program (QP) if the
objective function is (convex) quadratic, and the constraint functions are affine. A
quadratic program can be expressed in the form

minimize  (1/2)z? Pz +q¢Tz +r
subject to Gz =X h (4.34)
Az = b,

where P € 8"}, G € R™*", and A € RP*". In a quadratic program, we minimize
a convex quadratic function over a polyhedron, as illustrated in figure 4.5.

If the objective in (4.15) as well as the inequality constraint functions are (con-
vex) quadratic, as in

minimize  (1/2)z” Pox + ¢l z + ro

subject to  (1/2)aTPix +qfz+7r; <0, i=1,...,m (4.35)
Ax =b,
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Figure 4.5 Geometric illustration of QP. The feasible set P, which is a poly-
hedron, is shown shaded. The contour lines of the objective function, which
is convex quadratic, are shown as dashed curves. The point x* is optimal.

where P; € S"V, i = 0,1...,m, the problem is called a quadratically constrained
quadratic program (QCQP). In a QCQP, we minimize a convex quadratic function
over a feasible region that is the intersection of ellipsoids (when P; = 0).

Quadratic programs include linear programs as a special case, by taking P = 0
in (4.34). Quadratically constrained quadratic programs include quadratic pro-
grams (and therefore also linear programs) as a special case, by taking P, = 0
in (4.35), fori=1,...,m.

Examples

Least-squares and regression

The problem of minimizing the convex quadratic function
|Az — b||3 = 2T AT Az — 20" Az + T

is an (unconstrained) QP. It arises in many fields and has many names, e.g., re-
gression analysis or least-squares approximation. This problem is simple enough to
have the well known analytical solution 2 = ATb, where AT is the pseudo-inverse
of A (see §A.5.4).

When linear inequality constraints are added, the problem is called constrained
regression or constrained least-squares, and there is no longer a simple analytical
solution. As an example we can consider regression with lower and upper bounds
on the variables, i.e.,

minimize  ||Ax — b||3
subject to [; <z, <w;, 1=1,...,n,
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which is a QP. (We will study least-squares and regression problems in far more
depth in chapters 6 and 7.)

Distance between polyhedra

The (Euclidean) distance between the polyhedra P; = {« | Ajx < b1} and Py =
{z | Aoz X ba} in R" is defined as

diSt(Pl,PQ) = 1nf{||x1 — ZEQ”Q | x1 € P1, 29 € Pg}

If the polyhedra intersect, the distance is zero.
To find the distance between P; and P, we can solve the QP

minimize  ||x; — z2||3
subject to  Ayx; < by, Aoxs < by,

with variables z1, xo € R". This problem is infeasible if and only if one of the
polyhedra is empty. The optimal value is zero if and only if the polyhedra intersect,
in which case the optimal z; and zs are equal (and is a point in the intersection
P1NPz). Otherwise the optimal 27 and x5 are the points in P; and P, respectively,
that are closest to each other. (We will study geometric problems involving distance
in more detail in chapter 8.)

Bounding variance

We consider again the Chebyshev inequalities example (page 150), where the vari-
able is an unknown probability distribution given by p € R", about which we have
some prior information. The variance of a random variable f(x) is given by

n n 2
Ef2_(Ef)2:Zfi2pi_<Zfipi> ;
i=1 i=1

(where f; = f(u;)), which is a concave quadratic function of p.
It follows that we can maximize the variance of f(x), subject to the given prior
information, by solving the QP

. 2
maximize > 7, fZpi — (300, fipi)
subject to p>=0, 1Tp=1

i <alp<pBiy, i=1,...,m.

The optimal value gives the maximum possible variance of f(x), over all distribu-
tions that are consistent with the prior information; the optimal p gives a distri-
bution that achieves this maximum variance.

Linear program with random cost

We consider an LP,
minimize Tz
subject to Gz =< h

Az =b,
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with variable x € R™. We suppose that the cost function (vector) ¢ € R" is
random, with mean value ¢ and covariance E(c — ¢)(c —¢)7 = . (We assume
for simplicity that the other problem parameters are deterministic.) For a given
xz € R", the cost ¢’z is a (scalar) random variable with mean E ¢’z = '« and
variance

var(c'z) = E(Tz — Eclz)? = 272z,

In general there is a trade-off between small expected cost and small cost vari-
ance. One way to take variance into account is to minimize a linear combination
of the expected value and the variance of the cost, i.e.,

Ec'z +yvar(c'z),

which is called the risk-sensitive cost. The parameter v > 0 is called the risk-
aversion parameter, since it sets the relative values of cost variance and expected
value. (For v > 0, we are willing to trade off an increase in expected cost for a
sufficiently large decrease in cost variance).

To minimize the risk-sensitive cost we solve the QP

minimize ¢z + vz’ Sz
subject to Gz < h
Az =b.

Markowitz portfolio optimization

We consider a classical portfolio problem with n assets or stocks held over a period
of time. We let z; denote the amount of asset 7 held throughout the period, with
x; in dollars, at the price at the beginning of the period. A normal long position
in asset ¢ corresponds to z; > 0; a short position in asset i (i.e., the obligation to
buy the asset at the end of the period) corresponds to x; < 0. We let p; denote
the relative price change of asset i over the period, i.e., its change in price over
the period divided by its price at the beginning of the period. The overall return
on the portfolio is 7 = p’x (given in dollars). The optimization variable is the
portfolio vector x € R".

A wide variety of constraints on the portfolio can be considered. The simplest
set of constraints is that #; > 0 (i.e., no short positions) and 17z = B (i.e., the
total budget to be invested is B, which is often taken to be one).

We take a stochastic model for price changes: p € R" is a random vector, with
known mean p and covariance ¥. Therefore with portfolio z € R", the return r
is a (scalar) random variable with mean p’ z and variance 7 Xz. The choice of
portfolio = involves a trade-off between the mean of the return, and its variance.

The classical portfolio optimization problem, introduced by Markowitz, is the
QP

minimize 27Xz
subject to ﬁTsc > Tmin
1Tz =1, z>0,

where x, the portfolio, is the variable. Here we find the portfolio that minimizes
the return variance (which is associated with the risk of the portfolio) subject to
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achieving a minimum acceptable mean return r;,, and satisfying the portfolio
budget and no-shorting constraints.

Many extensions are possible. One standard extension, for example, is to allow
short positions, ¢.e., £; < 0. To do this we introduce variables Ziong and Zshort,
with

T T
Tlong = 07 Tshort = 07 I = Tlong — Tshort 1 Tshort < 771 Tlong-

The last constraint limits the total short position at the beginning of the period to
some fraction 7 of the total long position at the beginning of the period.

As another extension we can include linear transaction costs in the portfolio
optimization problem. Starting from a given initial portfolio xi,;x we buy and sell
assets to achieve the portfolio x, which we then hold over the period as described
above. We are charged a transaction fee for buying and selling assets, which is
proportional to the amount bought or sold. To handle this, we introduce variables
Ubuy and Ugen, which determine the amount of each asset we buy and sell before
the holding period. We have the constraints

T = Tinit + Upbuy — Usell, Ubuy = 07 Usell >~ 0.

We replace the simple budget constraint 17z = 1 with the condition that the initial
buying and selling, including transaction fees, involves zero net cash:

(1 - fsell)]-Tusell = (1 + fbuy)lTubuy

Here the lefthand side is the total proceeds from selling assets, less the selling
transaction fee, and the righthand side is the total cost, including transaction fee,
of buying assets. The constants fyuy > 0 and feen > 0 are the transaction fee rates
for buying and selling (assumed the same across assets, for simplicity).

The problem of minimizing return variance, subject to a minimum mean return,
and the budget and trading constraints, is a QP with variables , ubuy, Uscll-

Second-order cone programming

A problem that is closely related to quadratic programming is the second-order
cone program (SOCP):
minimize Tz
subject to ||[A;x +billa < cfz+d;, i=1,...,m (4.36)
Fz =g,

where x € R" is the optimization variable, 4; € R™*", and F' € R?*". We call a
constraint of the form
|Az + bl < 'z +d,

where A € R**" a second-order cone constraint, since it is the same as requiring
the affine function (Az + b, ¢Tx + d) to lie in the second-order cone in R**1,

When ¢; = 0,4 =1,...,m, the SOCP (4.36) is equivalent to a QCQP (which
is obtained by squaring each of the constraints). Similarly, if A; =0,¢=1,...,m,
then the SOCP (4.36) reduces to a (general) LP. Second-order cone programs are,
however, more general than QCQPs (and of course, LPs).
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Robust linear programming
We consider a linear program in inequality form,
minimize ¢’z
subject to alfx <b;, i=1,...,m,

in which there is some uncertainty or variation in the parameters ¢, a;, b;. To
simplify the exposition we assume that ¢ and b; are fixed, and that a; are known
to lie in given ellipsoids:

a; € & ={a; + Pu | [lullz < 1},

where P; € R™™". (If P; is singular we obtain ‘flat’ ellipsoids, of dimension rank P;;
P, = 0 means that a; is known perfectly.)
We will require that the constraints be satisfied for all possible values of the

parameters a;, which leads us to the robust linear program
. . . T
minimize c¢'x

subject to alx <b;foralla; €&, i=1,...,m. (4.37)

The robust linear constraint, aiTx < b; for all a; € &;, can be expressed as
sup{al = | a; € &} < by,
the lefthand side of which can be expressed as
sup{alz | a; € &} = alx+sup{u’ Pla| [juls <1}
= @ o+ [Pl
Thus, the robust linear constraint can be expressed as
@z +||Pl | < b,

which is evidently a second-order cone constraint. Hence the robust LP (4.37) can
be expressed as the SOCP

minimize Tz

subject to @’ x + ||[Plzla <b;, i=1,...,m.

Note that the additional norm terms act as reqularization terms; they prevent x
from being large in directions with considerable uncertainty in the parameters a;.

Linear programming with random constraints

The robust LP described above can also be considered in a statistical framework.
Here we suppose that the parameters a; are independent Gaussian random vectors,
with mean @; and covariance ;. We require that each constraint a} x < b; should
hold with a probability (or confidence) exceeding 7, where n > 0.5, i.e.,

prob(alz < b;) > 1. (4.38)
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We will show that this probability constraint can be expressed as a second-order
cone constraint.
Letting u = a z, with 02 denoting its variance, this constraint can be written

as b
prob(u_ug i_u)zn.
o

g

Since (u — u)/o is a zero mean unit variance Gaussian variable, the probability
above is simply ®((b; — w)/0), where

1 z 2
@(Z) = \/72?/ eit /2 dt

is the cumulative distribution function of a zero mean unit variance Gaussian ran-
dom variable. Thus the probability constraint (4.38) can be expressed as

b —
>0 (),

g

or, equivalently,
a+ o (n)o < b;.

From T = @l z and o = (z7%;2)'/? we obtain
ala+ 2 ()I|S; a2 < b

By our assumption that n > 1/2, we have ® () > 0, so this constraint is a
second-order cone constraint.
In summary, the problem

minimize Tz

subject to prob(alz <b;)>n, i=1,...,m
can be expressed as the SOCP
minimize ¢’z
subject to @; x + (I)_l(n)||23/2x||2 <b;, i=1,...,m.

(We will consider robust convex optimization problems in more depth in chapter 6.
See also exercises 4.13, 4.28, and 4.59.)

Example 4.8 Portfolio optimization with loss risk constraints. We consider again the
classical Markowitz portfolio problem described above (page 155). We assume here
that the price change vector p € R" is a Gaussian random variable, with mean p
and covariance . Therefore the return r is a Gaussian random variable with mean

7 = pLx and variance o2 = TSz,

Consider a loss risk constraint of the form
prob(r < «a) < 3, (4.39)

where « is a given unwanted return level (e.g., a large loss) and 3 is a given maximum
probability.
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As in the stochastic interpretation of the robust LP given above, we can express this
constraint using the cumulative distribution function ® of a unit Gaussian random
variable. The inequality (4.39) is equivalent to

pre+ @' (8) 2 2]z > a.

Provided 8 < 1/2 (i.e., ®'(B) < 0), this loss risk constraint is a second-order cone
constraint. (If 8 > 1/2, the loss risk constraint becomes nonconvex in x.)

The problem of maximizing the expected return subject to a bound on the loss
risk (with 8 < 1/2), can therefore be cast as an SOCP with one second-order cone
constraint:
maximize pla
subject to  pra 4+ @7 1(B) |2V 2%z]2 > a
z>=0, 1Tz=1.

There are many extensions of this problem. For example, we can impose several loss
risk constraints, i.e.,
prob(r < ;) < B, i=1,...,k,

(where 3; < 1/2), which expresses the risks (3;) we are willing to accept for various
levels of loss ().

Minimal surface

Consider a differentiable function f : R* — R with dom f = C. The surface area
of its graph is given by

A= /C JI+ IV @)1 de = /C 1V £(@), Dll2 da,

which is a convex functional of f. The minimal surface problem is to find the
function f that minimizes A subject to some constraints, for example, some given
values of f on the boundary of C.

We will approximate this problem by discretizing the function f. Let C
[0,1] x [0,1], and let f;; denote the value of f at the point (i/K, j/K), for i, j =
0,...,K. An approximate expression for the gradient of f at the point z =
(i/K,j/K) can be found using forward differences:

Vi)~ K { Jirrj — Jig } :
figei— fij
Substituting this into the expression for the area of the graph, and approximating
the integral as a sum, we obtain an approximation for the area of the graph:

1 K=l K(fi+15 — fi)
A= Agise = el Z K(fijs1— fij)
i,j=0 1
2
The discretized area approximation Agis is a convex function of f;;.
We can consider a wide variety of constraints on f;;, such as equality or in-
equality constraints on any of its entries (for example, on the boundary values), or
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on its moments. As an example, we consider the problem of finding the minimal
area surface with fixed boundary values on the left and right edges of the square:

minimize  Agjsc
subject to  fo; =1;, j=0,...,K (4.40)
ij:Tj, jZO,...,K

where f;;, i,j = 0,..., K, are the variables, and [;, r; are the given boundary
values on the left and right sides of the square.

We can transform the problem (4.40) into an SOCP by introducing new vari-
ables t;;,4, 7=0,..., K —1:

minimize  (1/K2) 35"t
K(fiv1,5 — fij)
subject to K(fij+1— fig) <tij, i,j=0,....,K—1
1 2
foi=1lj, j=0,....K
ij:Tj, j:O,...,K.

Geometric programming

In this section we describe a family of optimization problems that are not convex
in their natural form. These problems can, however, be transformed to convex op-
timization problems, by a change of variables and a transformation of the objective
and constraint functions.

Monomials and posynomials
A function f: R"™ — R with dom f = R’} |, defined as
f(x) = caftag? - zom, (4.41)

where ¢ > 0 and a; € R, is called a monomial function, or simply, a monomial.
The exponents a; of a monomial can be any real numbers, including fractional or
negative, but the coefficient ¢ can only be positive. (The term ‘monomial’ conflicts
with the standard definition from algebra, in which the exponents must be non-
negative integers, but this should not cause any confusion.) A sum of monomials,
i.e., a function of the form

K
z) = crxitt SRk L gk 4.42
1 2 n
k=1

where ¢ > 0, is called a posynomial function (with K terms), or simply, a posyn-
omial.
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Posynomials are closed under addition, multiplication, and nonnegative scal-
ing. Monomials are closed under multiplication and division. If a posynomial is
multiplied by a monomial, the result is a posynomial; similarly, a posynomial can
be divided by a monomial, with the result a posynomial.

4.5.2 Geometric programming

An optimization problem of the form

minimize  fo(z)

subject to  fi(z) <1, i=1,...,m (4.43)
hi(z)=1, i=1,...,p
where fo, ..., fm are posynomials and h1, ..., h, are monomials, is called a geomet-

ric program (GP). The domain of this problem is D = R/, ; the constraint 2 > 0
is implicit.

Extensions of geometric programming

Several extensions are readily handled. If f is a posynomial and £ is a monomial,
then the constraint f(z) < h(z) can be handled by expressing it as f(z)/h(z) <1
(since f/h is posynomial). This includes as a special case a constraint of the
form f(z) < a, where f is posynomial and a > 0. In a similar way if hy; and ho
are both nonzero monomial functions, then we can handle the equality constraint
hi(z) = ha(z) by expressing it as hy(x)/ha(x) = 1 (since hy/hg is monomial). We
can maximize a nonzero monomial objective function, by minimizing its inverse
(which is also a monomial).

For example, consider the problem

maximize x/y
subject to 2 <x <3
2?2 +3y/z < Vi

xfy = 2%,

with variables z, y, z € R (and the implicit constraint z, y, z > 0). Using
the simple transformations described above, we obtain the equivalent standard
form GP
minimize 71y
subject to 2z~ ' <1, (1/3)z <1
a2y~12 4 3y1/2,-1 < 1
xy 22 =1.

We will refer to a problem like this one, that is easily transformed to an equiva-
lent GP in the standard form (4.43), also as a GP. (In the same way that we refer
to a problem easily transformed to an LP as an LP.)
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Geometric program in convex form

Geometric programs are not (in general) convex optimization problems, but they
can be transformed to convex problems by a change of variables and a transforma-
tion of the objective and constraint functions.

We will use the variables defined as y; = log x;, so z; = e¥. If f is the monomial
function of z given in (4.41), i.e.,

An
n o

f(z) = caftag® --x
then

flx) = fle”,....e")
= c(eyl)al . (eyn)an
eaTerb’

where b = logec. The change of variables y; = logx; turns a monomial function
into the exponential of an affine function.
Similarly, if f is the posynomial given by (4.42), i.e.,

K
fl@) =) cpaftrag . aint,
k=1
then
K
OEDIEE
k=1
where ar, = (a1k, - - ., ank) and by = log cg. After the change of variables, a posyn-

omial becomes a sum of exponentials of affine functions.
The geometric program (4.43) can be expressed in terms of the new variable y
as .
minimize ZkK:O1 ok Y+bok
subject to ZkK:il einyTbin < 1, 1=1,....m
T . .
e ¥thi =1 §=1,...,p,
where a;; € R", ¢ =0,...,m, contain the exponents of the posynomial inequality
constraints, and g; € R", ¢ = 1,...,p, contain the exponents of the monomial
equality constraints of the original geometric program.

Now we transform the objective and constraint functions, by taking the loga-
rithm. This results in the problem

minimize  fo(y) = log (22101 eaoTky"rbok)
subject to  f;(y) = log (ZkK:il eaiTkerbik) <0, i=1,...,m (4.44)
hi(y) =gTy+hi =0, i=1,...,p.

Since the functions f; are convex, and h; are affine, this problem is a convex
optimization problem. We refer to it as a geometric program in convexr form. To
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distinguish it from the original geometric program, we refer to (4.43) as a geometric
program in posynomial form.

Note that the transformation between the posynomial form geometric pro-
gram (4.43) and the convex form geometric program (4.44) does not involve any
computation; the problem data for the two problems are the same. It simply
changes the form of the objective and constraint functions.

If the posynomial objective and constraint functions all have only one term,
i.e., are monomials, then the convex form geometric program (4.44) reduces to a
(general) linear program. We can therefore consider geometric programming to be
a generalization, or extension, of linear programming.

Examples

Frobenius norm diagonal scaling

Consider a matrix M € R™", and the associated linear function that maps u
into y = Mu. Suppose we scale the coordinates, i.e., change variables to @ = Du,
y = Dy, where D is diagonal, with D;; > 0. In the new coordinates the linear
function is given by § = DM D~ ‘4.

Now suppose we want to choose the scaling in such a way that the resulting
matrix, DM D™, is small. We will use the Frobenius norm (squared) to measure
the size of the matrix:

IDMDY||2 tr ((DMD—l)T (DMD—l))

n

= Z (DMD?I)Z

i,j=1

2 1242
Z Mijdi/djv

i,j=1

where D = diag(d). Since this is a posynomial in d, the problem of choosing the
scaling d to minimize the Frobenius norm is an unconstrained geometric program,

minimize Y7 M2d7/dZ,

151

with variable d. The only exponents in this geometric program are 0, 2, and —2.

Design of a cantilever beam

We consider the design of a cantilever beam, which consists of N segments, num-
bered from right to left as 1,..., N, as shown in figure 4.6. Each segment has unit
length and a uniform rectangular cross-section with width w; and height h;. A
vertical load (force) F' is applied at the right end of the beam. This load causes
the beam to deflect (downward), and induces stress in each segment of the beam.
We assume that the deflections are small, and that the material is linearly elastic,
with Young’s modulus E.
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segment 4  segment 3  segment 2  segment 1

Figure 4.6 Segmented cantilever beam with 4 segments. Each segment has
unit length and a rectangular profile. A vertical force F' is applied at the
right end of the beam.

The design variables in the problem are the widths w; and heights h; of the NV
segments. We seek to minimize the total volume of the beam (which is proportional
to its weight),

wihy + - +wnhy,

subject to some design constraints. We impose upper and lower bounds on width
and height of the segments,

Wiin < Wi < Wmax, hmin < h; Shmaxa 1= 17~-~7Na
as well as the aspect ratios,
Smin S hz/wz S Smax~

In addition, we have a limit on the maximum allowable stress in the material, and
on the vertical deflection at the end of the beam.
We first consider the maximum stress constraint. The maximum stress in seg-
ment i, which we denote o;, is given by o; = 6iF/(w;h?). We impose the constraints
6iF .
wih? = Omax, ¢=1,...,N,

to ensure that the stress does not exceed the maximum allowable value o,y any-
where in the beam.
The last constraint is a limit on the vertical deflection at the end of the beam,
which we will denote y;:
Y1 S Ymax-

The deflection y; can be found by a recursion that involves the deflection and slope
of the beam segments:

. F . F
Vi = 12(Z — 1/2)@ + Vi+1, Yi = 6(’L — 1/3)m + Vi4+1 + Yit+1, (445)
for i = N,N —1,...,1, with starting values vy11 = yny41 = 0. In this recursion,
y; is the deflection at the right end of segment i, and v; is the slope at that point.
We can use the recursion (4.45) to show that these deflection and slope quantities
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are in fact posynomial functions of the variables w and h. We first note that vy
and yy41 are zero, and therefore posynomials. Now assume that v;41 and y;1 are
posynomial functions of w and h. The lefthand equation in (4.45) shows that v; is
the sum of a monomial and a posynomial (i.e., v;11), and therefore is a posynomial.
From the righthand equation in (4.45), we see that the deflection y; is the sum of
a monomial and two posynomials (v;4+1 and y;11), and so is a posynomial. In
particular, the deflection at the end of the beam, y1, is a posynomial.
The problem is then

minimize Zfil w;h;

subject to  Wmin < W; < Wnax, ¢=1,..., N
hmin < h; <hmax, 1=1,...,N
Sminghi/wiSSmaX, iZl,...,N
6iF/(w;h?) < omax, i=1,...,N
Y1 S Ymax;

(4.46)

with variables w and h. This is a GP, since the objective is a posynomial, and
the constraints can all be expressed as posynomial inequalities. (In fact, the con-
straints can be all be expressed as monomial inequalities, with the exception of the
deflection limit, which is a complicated posynomial inequality.)

When the number of segments IV is large, the number of monomial terms ap-
pearing in the posynomial y; grows approximately as N2. Another formulation of
this problem, explored in exercise 4.31, is obtained by introducing vy,...,vy and
Y1,...,Yyn as variables, and including a modified version of the recursion as a set
of constraints. This formulation avoids this growth in the number of monomial
terms.

Minimizing spectral radius via Perron-Frobenius theory

Suppose the matrix A € R"*" is elementwise nonnegative, i.e., A;; > 0 for 4,5 =
1,...,n, and irreducible, which means that the matrix (I + A)"~! is elementwise
positive. The Perron-Frobenius theorem states that A has a positive real eigenvalue
Apt equal to its spectral radius, i.e., the largest magnitude of its eigenvalues. The
Perron-Frobenius eigenvalue Aps determines the asymptotic rate of growth or decay
of A¥ as k — oo; in fact, the matrix ((1/)\pf)A)k converges. Roughly speaking,
this means that as k — oo, A* grows like )\I’jf, if Apr > 1, or decays like )\’;f, if
)\pf <1

A basic result in the theory of nonnegative matrices states that the Perron-
Frobenius eigenvalue is given by

Apt = inf{\ | Av < Ao for some v > 0}

(and moreover, that the infimum is achieved). The inequality Av < Av can be
expressed as

D Aiu /() <1, i=1,.,m, (4.47)
=1

which is a set of posynomial inequalities in the variables A;;, v;, and A. Thus,
the condition that Aps < A can be expressed as a set of posynomial inequalities
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in A, v, and A. This allows us to solve some optimization problems involving the
Perron-Frobenius eigenvalue using geometric programming.

Suppose that the entries of the matrix A are posynomial functions of some
underlying variable z € R*. In this case the inequalities (4.47) are posynomial
inequalities in the variables x € Rk, v e R"™, and A € R. We consider the problem
of choosing z to minimize the Perron-Frobenius eigenvalue (or spectral radius) of
A, possibly subject to posynomial inequalities on z,

minimize Ay (A(z))
subject to  fi(x) <1, i=1,...,p,

where f; are posynomials. Using the characterization above, we can express this
problem as the GP

minimize A
subject to E?Zl Ajjvi /(M) <1, i=1,...,n
fl(x)gl’ izl,""p?

where the variables are x, v, and A.

As a specific example, we consider a simple model for the population dynamics
for a bacterium, with time or period denoted by ¢t = 0,1, 2, ..., in hours. The vector
p(t) € Ri characterizes the population age distribution at period ¢: pi(t) is the
total population between 0 and 1 hours old; po(t) is the total population between
1 and 2 hours old; and so on. We (arbitrarily) assume that no bacteria live more
than 4 hours. The population propagates in time as p(t + 1) = Ap(t), where

by by by by
st 0 0 0
A=190 s5 0 0
0 0 s3 0

Here b; is the birth rate among bacteria in age group i, and s; is the survival rate
from age group ¢ into age group i + 1. We assume that b; > 0 and 0 < s; < 1,
which implies that the matrix A is irreducible.

The Perron-Frobenius eigenvalue of A determines the asymptotic growth or
decay rate of the population. If Ay < 1, the population converges to zero like
/\Ef’ and so has a half-life of —1/log, Aps hours. If Ay > 1 the population grows
geometrically like X;)f, with a doubling time of 1/logy Apr hours. Minimizing the
spectral radius of A corresponds to finding the fastest decay rate, or slowest growth
rate, for the population.

As our underlying variables, on which the matrix A depends, we take ¢; and co,
the concentrations of two chemicals in the environment that affect the birth and
survival rates of the bacteria. We model the birth and survival rates as monomial
functions of the two concentrations:

_ nom nom\o; nom 3; S
bi = B (e M (/5O i=1,... 4
nom nom \"y; nom\d; .
si = s7(er /M) (ea/cy"™)%, i=1,...,3.
Here, b7°™ is nominal birth rate, s¥°™ is nominal survival rate, and ™ is nominal
y Vi ) 94 9 7

concentration of chemical i. The constants «;, 8;, i, and J; give the effect on the
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birth and survival rates due to changes in the concentrations of the chemicals away
from the nominal values. For example as = —0.3 and vy; = 0.5 means that an
increase in concentration of chemical 1, over the nominal concentration, causes a
decrease in the birth rate of bacteria that are between 1 and 2 hours old, and an
increase in the survival rate of bacteria from 0 to 1 hours old.

We assume that the concentrations ¢; and ¢, can be independently increased or
decreased (say, within a factor of 2), by administering drugs, and pose the problem
of finding the drug mix that maximizes the population decay rate (i.e., minimizes
Apf(A)). Using the approach described above, this problem can be posed as the
GP

minimize A
subject to  bi1v1 + bove + b3vz + byvg < Avg
s1v1 < Avg
S9v2 < A3
5303 < Ay
1/2 <¢ifefom <2, i=1,2
by = b2om ¢y /RO i (e fehom)Bi i =1,... .4
8 = sPOM(cy /AOM)Yi(cy feyom)0i . i=1,...,3,

with variables b;, s;, ¢;, v;, and A.

Generalized inequality constraints

One very useful generalization of the standard form convex optimization prob-
lem (4.15) is obtained by allowing the inequality constraint functions to be vector
valued, and using generalized inequalities in the constraints:

minimize  fo(z)
subject to  fi(z) <k, 0, i=1,...,m (4.48)

Ax = b,

where fo: R" - R, K; C R are proper cones, and fi : R"— R are K;-convex.
We refer to this problem as a (standard form) convex optimization problem with
generalized inequality constraints. Problem (4.15) is a special case with K; = R,
t=1,...,m.

Many of the results for ordinary convex optimization problems hold for problems
with generalized inequalities. Some examples are:

e The feasible set, any sublevel set, and the optimal set are convex.
e Any point that is locally optimal for the problem (4.48) is globally optimal.

e The optimality condition for differentiable fj, given in §4.2.3, holds without
any change.

We will also see (in chapter 11) that convex optimization problems with generalized
inequality constraints can often be solved as easily as ordinary convex optimization
problems.
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4.6.1

4.6.2

Conic form problems

Among the simplest convex optimization problems with generalized inequalities are
the conic form problems (or cone programs), which have a linear objective and one
inequality constraint function, which is affine (and therefore K-convex):

minimize ¢z
subject to Fz+g <k 0 (4.49)
Ax = 0.

When K is the nonnegative orthant, the conic form problem reduces to a linear
program. We can view conic form problems as a generalization of linear programs
in which componentwise inequality is replaced with a generalized linear inequality.

Continuing the analogy to linear programming, we refer to the conic form prob-

lem

minimize Tz

subject to = >g 0
Ar =D

as a conic form problem in standard form. Similarly, the problem

minimize Lz

subject to Fzx+ g <k 0

is called a conic form problem in inequality form.

Semidefinite programming

When K is S’j_, the cone of positive semidefinite k& x k& matrices, the associated
conic form problem is called a semidefinite program (SDP), and has the form

minimize ¢’z
subject to a1 Fy + -+ z,F, + G =<0 (4.50)
Ax = b,
where G, Fy,...,F, € S¥, and A € RP*". The inequality here is a linear matrix

inequality (see example 2.10).
If the matrices G, Fi,..., F, are all diagonal, then the LMI in (4.50) is equiva-
lent to a set of n linear inequalities, and the SDP (4.50) reduces to a linear program.

Standard and inequality form semidefinite programs

Following the analogy to LP, a standard form SDP has linear equality constraints,
and a (matrix) nonnegativity constraint on the variable X € S™:

minimize  tr(CX)
subject to tr(4;X)=10b;, i=1,...,p (4.51)
X =0,
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where C, Ay,..., A, € S". (Recall that tr(CX) = szzl Cy;Xi; is the form of a
general real-valued linear function on S™.) This form should be compared to the
standard form linear program (4.28). In LP and SDP standard forms, we minimize
a linear function of the variable, subject to p linear equality constraints on the
variable, and a nonnegativity constraint on the variable.

An inequality form SDP, analogous to an inequality form LP (4.29), has no
equality constraints, and one LMI:

minimize Lz

subject to x1A; + -+ x, A, =2 B,
with variable z € R", and parameters B, Ai,..., A, € S¥, c e R".

Multiple LMIs and linear inequalities

It is common to refer to a problem with linear objective, linear equality and in-
equality constraints, and several LMI constraints, .e.,

minimize Tz

subject to  F®)(z) = xlFl(i) +oda, FY 4+ GO < 0, i1=1,....K
Gr =< h, Axr = b,

as an SDP as well. Such problems are readily transformed to an SDP, by forming
a large block diagonal LMI from the individual LMIs and linear inequalities:

minimize ¢’z
subject to diag(Gz — h, F)(z),..., FF)(z)) <0
Az =b.

Examples

Second-order cone programming
The SOCP (4.36) can be expressed as a conic form problem

minimize ¢’z
subject to  —(Ajz + b, clw+d;) 2k, 0, i=1,...,m

(3
Fr =g,
in which
K ={(y,t) e R"*! | [lyll2 <},

i.e., the second-order cone in R™*!. This explains the name second-order cone
program for the optimization problem (4.36).

Matrix norm minimization

Let A(xz) = Ag + 1141 + -+ + 2, A, where A; € RP*?. We consider the uncon-
strained problem
minimize [|A(x)]2,
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where || - ||2 denotes the spectral norm (maximum singular value), and x € R" is
the variable. This is a convex problem since || A(z)]|2 is a convex function of z.

Using the fact that ||A]js < s if and only if ATA < s2I (and s > 0), we can
express the problem in the form

minimize s
subject to  A(x)TA(x) < sl,

with variables x and s. Since the function A(x)T A(x) — sI is matrix convex in
(x,s), this is a convex optimization problem with a single ¢ X ¢ matrix inequality
constraint.

We can also formulate the problem using a single linear matrix inequality of
size (p+ q) x (p+ ¢), using the fact that

ATA <] (and t > 0) < {ZT tA}} = 0.
(see §A.5.5). This results in the SDP
minimize ¢
subject to { A(a{)T At(Ix) } =0

in the variables x and ¢.

Moment problems

Let t be a random variable in R. The expected values Et* (assuming they exist)
are called the (power) moments of the distribution of t. The following classical
results give a characterization of a moment sequence.

If there is a probability distribution on R such that 2 = Et*, k = 0,...,2n,
then g = 1 and

o T X9 .o Tn—1 Ty
I To T3 e Iy Tn41
T2 I3 Xy . Tn41 Tn42
H(zo,...,72,) = : : . . . =0. (4.52)
Tp—1 T Tp4+1 -+ T2p—2 T2p—-1
L T Tn+l Tp42 ... Ton-—1 Ton
(The matrix H is called the Hankel matriz associated with xg,...,za,.) This is
easy to see: Let z; = Et', i =0,...,2n be the moments of some distribution, and

let ¥ = (Yo, Y1, ---yn) € R"TL. Then we have

n

y H(zo, ..., x2n)y = Y yit; B =E(yo + yut' + -+ + ynt™)* 2 0.
i,j=0

The following partial converse is less obvious: If 2o = 1 and H(z) > 0, then there
exists a probability distribution on R such that z; = Et*, i = 0,...,2n. (For a
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proof, see exercise 2.37.) Now suppose that g = 1, and H(z) > 0 (but possibly
H(x) # 0), i.e., the linear matrix inequality (4.52) holds, but possibly not strictly.
In this case, there is a sequence of distributions on R, whose moments converge to
2. In summary: the condition that xg, ..., x2, be the moments of some distribution
on R (or the limit of the moments of a sequence of distributions) can be expressed
as the linear matrix inequality (4.52) in the variable z, together with the linear
equality x¢g = 1. Using this fact, we can cast some interesting problems involving
moments as SDPs.

Suppose t is a random variable on R. We do not know its distribution, but we
do know some bounds on the moments, i.e.,

HkgEtkgﬁk, k=1,....2n

(which includes, as a special case, knowing exact values of some of the moments).
Let p(t) = co + c1t + - -+ + c2,t?™ be a given polynomial in ¢t. The expected value
of p(t) is linear in the moments E t*:

2n 2n
Ep(t) = Zci Et = Zciﬂci.
i=0 i=0

We can compute upper and lower bounds for E p(t),

minimize (maximize) Ep(t)
subject to ngEtkSEk, k=1,...,2n,

over all probability distributions that satisfy the given moment bounds, by solving

the SDP
minimize (maximize) c¢121 + -+ + C2nZon

subject to Ky S T < Ry, k=1,...,2n
H(Ll‘l,...,wgn) EO

with variables x4, ..., xa,. This gives bounds on E p(t), over all probability dis-
tributions that satisfy the known moment constraints. The bounds are sharp in
the sense that there exists a sequence of distributions, whose moments satisfy the
given moment bounds, for which E p(t) converges to the upper and lower bounds
found by these SDPs.

Bounding portfolio risk with incomplete covariance information

We consider once again the setup for the classical Markowitz portfolio problem (see
page 155). We have a portfolio of n assets or stocks, with z; denoting the amount
of asset 7 that is held over some investment period, and p; denoting the relative
price change of asset ¢ over the period. The change in total value of the portfolio
is pT'z. The price change vector p is modeled as a random vector, with mean and
covariance

p=Ep, T=E(p-pp-p"
The change in value of the portfolio is therefore a random variable with mean p”

and standard deviation o = (z7%x)'/2. The risk of a large loss, i.e., a change
in portfolio value that is substantially below its expected value, is directly related
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to the standard deviation o, and increases with it. For this reason the standard
deviation o (or the variance ¢2) is used as a measure of the risk associated with
the portfolio.

In the classical portfolio optimization problem, the portfolio z is the optimiza-
tion variable, and we minimize the risk subject to a minimum mean return and
other constraints. The price change statistics p and ¥ are known problem param-
eters. In the risk bounding problem considered here, we turn the problem around:
we assume the portfolio = is known, but only partial information is available about
the covariance matrix 3. We might have, for example, an upper and lower bound
on each entry:

Lij <% <Uyj, 4 j=1,...,n,

where L and U are given. We now pose the question: what is the maximum risk
for our portfolio, over all covariance matrices consistent with the given bounds?
We define the worst-case variance of the portfolio as

o2, =sup{z’ S | Ljj <% < Uy, i,5=1,...,n, ¥ = 0}.

We have added the condition ¥ > 0, which the covariance matrix must, of course,
satisfy.
We can find oy, by solving the SDP

maximize zTXz
subject to Lij < Eij < Uij, i, _] = 1, B
>0

with variable ¥ € S™ (and problem parameters x, L, and U). The optimal ¥ is
the worst covariance matrix consistent with our given bounds on the entries, where
‘worst’ means largest risk with the (given) portfolio . We can easily construct
a distribution for p that is consistent with the given bounds, and achieves the
worst-case variance, from an optimal ¥ for the SDP. For example, we can take
p =P+ 220, where v is any random vector with Ev = 0 and Evv” = I.

Evidently we can use the same method to determine oy, for any prior informa-
tion about X that is convex. We list here some examples.

o Known wvariance of certain portfolios. We might have equality constraints
such as
ut Yuy, = o3,

where uj and oy, are given. This corresponds to prior knowledge that certain
known portfolios (given by wug) have known (or very accurately estimated)
variance.

e Including effects of estimation error. If the covariance ¥ is estimated from
empirical data, the estimation method will give an estimate f), and some in-
formation about the reliability of the estimate, such as a confidence ellipsoid.
This can be expressed as

where C' is a positive definite quadratic form on S™, and the constant «
determines the confidence level.
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e Factor models. The covariance might have the form
= FZfactorFT + Da

where F' € R"Xk, Ytactor € Sk, and D is diagonal. This corresponds to a
model of the price changes of the form

p=Fz+d,

where z is a random variable (the underlying factors that affect the price
changes) and d; are independent (additional volatility of each asset price).
We assume that the factors are known. Since X is linearly related to Xgactor
and D, we can impose any convex constraint on them (representing prior
information) and still compute oy using convex optimization.

e Information about correlation coefficients. In the simplest case, the diagonal
entries of ¥ (i.e., the volatilities of each asset price) are known, and bounds
on correlation coefficients between price changes are known:

$21/2571/2 < Uijs

W g

lij < pij = i, j=1...,n

Since ¥;; are known, but X;; for ¢ # j are not, these are linear inequalities.

Fastest mixing Markov chain on a graph

We consider an undirected graph, with nodes 1,...,n, and a set of edges
EC{l,....,n}x{1,...,n}.

Here (i,7) € £ means that nodes 7 and j are connected by an edge. Since the
graph is undirected, £ is symmetric: (4,7) € £ if and only if (j,i) € £. We allow
the possibility of self-loops, i.e., we can have (i,7) € &.

We define a Markov chain, with state X (t) € {1,...,n}, for ¢ € Z, (the set
of nonnegative integers), as follows. With each edge (i,7) € £ we associate a
probability P;;, which is the probability that X makes a transition between nodes
tand j. State transitions can only occur across edges; we have P;; = 0 for (4,5) € £.
The probabilities associated with the edges must be nonnegative, and for each node,
the sum of the probabilities of links connected to the node (including a self-loop,
if there is one) must equal one.

The Markov chain has transition probability matrix

P,j=prob(X(t+1)=1i|X(t)=3), 4,j=1,...,n.
This matrix must satisfy
P;>0, i, j=1,...,n, 17p =17, p=PT, (4.53)

and also
Pij =0 for (Z,j) € E. (454)
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4.7

4.7.1

Since P is symmetric and 17P = 17, we conclude P1 = 1, so the uniform
distribution (1/n)1 is an equilibrium distribution for the Markov chain. Conver-
gence of the distribution of X (¢) to (1/n)1 is determined by the second largest (in
magnitude) eigenvalue of P, i.e., by r = max{Aa, —A,}, where

I=M2X2> 2\

are the eigenvalues of P. We refer to r as the mizing rate of the Markov chain.
If r = 1, then the distribution of X (¢) need not converge to (1/n)1 (which means
the Markov chain does not mix). When r < 1, the distribution of X (¢) approaches
(1/n)1 asymptotically as 7, as t — oco. Thus, the smaller r is, the faster the
Markov chain mixes.

The fastest mizing Markov chain problem is to find P, subject to the con-
straints (4.53) and (4.54), that minimizes r. (The problem data is the graph, i.e.,
£.) We will show that this problem can be formulated as an SDP.

Since the eigenvalue A\; = 1 is associated with the eigenvector 1, we can express
the mixing rate as the norm of the matrix P, restricted to the subspace 1t: r =
|QPQ)||2, where @ = I —(1/n)117 is the matrix representing orthogonal projection
on 1+. Using the property P1 = 1, we have

ro= QPQl:
I(Z = (1/m) 117 )P(I — (1/n)117)]
1P = (1/n) 117 |2

This shows that the mixing rate r is a convex function of P, so the fastest mixing
Markov chain problem can be cast as the convex optimization problem

minimize  ||P — (1/n)117]|,
subject to Pl=1
P@jZO, i,jzl,...,n
Py =0for (i,)) & &,

with variable P € S". We can express the problem as an SDP by introducing a
scalar variable ¢ to bound the norm of P — (1/n)117:

minimize ¢

subject to —tI < P — (1/n)117 <¢I
P1=1 (4.55)
P; >0, ¢j=1,...,n
Pij =0 for (Z,]) ¢€

Vector optimization

General and convex vector optimization problems

In §4.6 we extended the standard form problem (4.1) to include vector-valued
constraint functions. In this section we investigate the meaning of a vector-valued
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objective function. We denote a general vector optimization problem as

minimize (with respect to K) fo(z)
subject to () <0, i=1,...,m (4.56)
=0. i=

Here z € R" is the optimization variable, K C RY is a proper cone, fo : R" — RY
is the objective function, f; : R™ — R are the inequality constraint functions, and
h; : R™ — R are the equality constraint functions. The only difference between this
problem and the standard optimization problem (4.1) is that here, the objective
function takes values in R?, and the problem specification includes a proper cone
K, which is used to compare objective values. In the context of vector optimization,
the standard optimization problem (4.1) is sometimes called a scalar optimization
problem.

We say the vector optimization problem (4.56) is a convex vector optimization
problem if the objective function fj is K-convex, the inequality constraint functions
fi,..., fm are convex, and the equality constraint functions hy, ..., h, are affine.
(As in the scalar case, we usually express the equality constraints as Az = b, where
A e RP™)

What meaning can we give to the vector optimization problem (4.56)? Suppose
z and y are two feasible points (i.e., they satisfy the constraints). Their associated
objective values, fo(z) and fo(y), are to be compared using the generalized inequal-
ity <x. We interpret fo(z) <k fo(y) as meaning that x is ‘better than or equal’ in
value to y (as judged by the objective fq, with respect to K). The confusing aspect
of vector optimization is that the two objective values fo(z) and fo(y) need not be
comparable; we can have neither fo(z) <k fo(y) nor fo(y) <k fo(x), i.e., neither
is better than the other. This cannot happen in a scalar objective optimization
problem.

Optimal points and values

We first consider a special case, in which the meaning of the vector optimization
problem is clear. Consider the set of objective values of feasible points,

O:{f0($)|3$€D, fL('r>SO7 Z:17ama hl(I):Oa Z:177p}gRqa

which is called the set of achievable objective values. If this set has a minimum
element (see §2.4.2), i.e., there is a feasible x such that fo(z) <k fo(y) for all
feasible y, then we say = is optimal for the problem (4.56), and refer to fo(z) as
the optimal value of the problem. (When a vector optimization problem has an
optimal value, it is unique.) If z* is an optimal point, then fy(z*), the objective
at x*, can be compared to the objective at every other feasible point, and is better
than or equal to it. Roughly speaking, x* is unambiguously a best choice for =,
among feasible points.
A point z* is optimal if and only if it is feasible and

OC fola*)+ K (4.57)
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fo(z*)

Figure 4.7 The set O of achievable values for a vector optimization with
objective values in R?, with cone K = R?,_, is shown shaded. In this case,
the point labeled fo(z*) is the optimal value of the problem, and z* is an
optimal point. The objective value fo(z*) can be compared to every other
achievable value fo(y), and is better than or equal to fo(y). (Here, ‘better
than or equal to’ means ‘is below and to the left of’.) The lightly shaded
region is fo(x*)+4 K, which is the set of all z € R? corresponding to objective
values worse than (or equal to) fo(z™).

(see §2.4.2). The set fo(z*) + K can be interpreted as the set of values that are
worse than, or equal to, fo(z*), so the condition (4.57) states that every achievable
value falls in this set. This is illustrated in figure 4.7. Most vector optimization
problems do not have an optimal point and an optimal value, but this does occur
in some special cases.

Example 4.9 Best linear unbiased estimator. Suppose y = Az + v, where v € R™ is
a measurement noise, y € R™ is a vector of measurements, and € R" is a vector to
be estimated, given the measurement y. We assume that A has rank n, and that the
measurement noise satisfies Ev = 0, Evo? = I, i.e., its components are zero mean
and uncorrelated.

A linear estimator of x has the form Z = Fy. The estimator is called unbiased if for
all z we have EZ = z, i.e., if FA = I. The error covariance of an unbiased estimator
is

EZ-z)z—2)  =EFuw" F' = FF".

Our goal is to find an unbiased estimator that has a ‘small’ error covariance matrix.
We can compare error covariances using matrix inequality, ¢.e., with respect to S’}.
This has the following interpretation: Suppose £1 = Fiy, T2 = Fby are two unbiased
estimators. Then the first estimator is at least as good as the second, i.e., Fy F{ <
FyFY | if and only if for all ¢,

E("Z — "2)? <E(" T2 — )’

In other words, for any linear function of x, the estimator F} yields at least as good
an estimate as does F5.
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We can express the problem of finding an unbiased estimator for x as the vector
optimization problem

minimize (w.r.t. S}) FFT

subject to FA=1, (4.58)

with variable F € R"*™. The objective FFT is convex with respect to S, so the
problem (4.58) is a convex vector optimization problem. An easy way to see this is
to observe that v” FFTv = ||FTv||3 is a convex function of F' for any fixed v.

It is a famous result that the problem (4.58) has an optimal solution, the least-squares
estimator, or pseudo-inverse,

F*=A"=ATA) AT,
For any F with FA = I, we have FFT > F*F*T. The matrix
F*F*T _ ATATT _ (ATA)—I

is the optimal value of the problem (4.58).

Pareto optimal points and values

We now consider the case (which occurs in most vector optimization problems of
interest) in which the set of achievable objective values does not have a minimum
element, so the problem does not have an optimal point or optimal value. In these
cases minimal elements of the set of achievable values play an important role. We
say that a feasible point x is Pareto optimal (or efficient) if fo(x) is a minimal
element of the set of achievable values O. In this case we say that fo(z) is a
Pareto optimal value for the vector optimization problem (4.56). Thus, a point x
is Pareto optimal if it is feasible and, for any feasible y, fo(y) <k fo(z) implies
fo(y) = fo(x). In other words: any feasible point y that is better than or equal to
z (i.e., foly) =k fo(z)) has exactly the same objective value as x.
A point x is Pareto optimal if and only if it is feasible and

(fo(w) = K) N O = {fo(x)} (4.59)

(see §2.4.2). The set fo(z) — K can be interpreted as the set of values that are
better than or equal to fo(z), so the condition (4.59) states that the only achievable
value better than or equal to fo(z) is fo(z) itself. This is illustrated in figure 4.8.

A vector optimization problem can have many Pareto optimal values (and
points). The set of Pareto optimal values, denoted P, satisfies

PCONbdO,

i.e., every Pareto optimal value is an achievable objective value that lies in the
boundary of the set of achievable objective values (see exercise 4.52).
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4.7.4

fo(zP®)

Figure 4.8 The set O of achievable values for a vector optimization problem
with objective values in R?, with cone K = Ri, is shown shaded. This
problem does not have an optimal point or value, but it does have a set of
Pareto optimal points, whose corresponding values are shown as the dark-
ened curve on the lower left boundary of O. The point labeled fo(zP°)
is a Pareto optimal value, and zP° is a Pareto optimal point. The lightly
shaded region is fo(zP°) — K, which is the set of all z € R? corresponding
to objective values better than (or equal to) fo(zP°).

Scalarization

Scalarization is a standard technique for finding Pareto optimal (or optimal) points
for a vector optimization problem, based on the characterization of minimum and
minimal points via dual generalized inequalities given in §2.6.3. Choose any A > g«
0, i.e., any vector that is positive in the dual generalized inequality. Now consider
the scalar optimization problem

minimize AT fo(7)
subject to  fi(z) <0, i=1,...,m (4.60)
hi(x)=0, i=1,...,p,

and let x be an optimal point. Then x is Pareto optimal for the vector optimization
problem (4.56). This follows from the dual inequality characterization of minimal
points given in §2.6.3, and is also easily shown directly. If x were not Pareto optimal,
then there is a y that is feasible, satisfies fo(y) <k fo(x), and fo(z) # fo(y).
Since fo(z) — fo(y) =k 0 and is nonzero, we have AT (fo(z) — fo(y)) > 0, i.e.,
M fo(z) > AT fo(y). This contradicts the assumption that z is optimal for the
scalar problem (4.60).

Using scalarization, we can find Pareto optimal points for any vector opti-
mization problem by solving the ordinary scalar optimization problem (4.60). The
vector A\, which is sometimes called the weight vector, must satisfy A =g+ 0. The
weight vector is a free parameter; by varying it we obtain (possibly) different Pareto
optimal solutions of the vector optimization problem (4.56). This is illustrated in
figure 4.9. The figure also shows an example of a Pareto optimal point that cannot
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Figure 4.9 Scalarization. The set O of achievable values for a vector opti-
mization problem with cone K = R?,_. Three Pareto optimal values fo(z1),
fo(z2), fo(zs) are shown. The first two values can be obtained by scalar-
ization: fo(z1) minimizes AT u over all u € O and fo(x2) minimizes A} u,
where A1, A2 > 0. The value fo(z3) is Pareto optimal, but cannot be found
by scalarization.

be obtained via scalarization, for any value of the weight vector A > g+ 0.

The method of scalarization can be interpreted geometrically. A point x is
optimal for the scalarized problem, i.e., minimizes AT fy over the feasible set, if
and only if A'(fo(y) — fo(z)) > 0 for all feasible 3. But this is the same as saying
that {u | — AT (u— fo(x)) = 0} is a supporting hyperplane to the set of achievable
objective values O at the point fy(z); in particular

{u| AT (u— fo(z)) <0}NO =0 (4.61)

(See figure 4.9.) Thus, when we find an optimal point for the scalarized problem, we
not only find a Pareto optimal point for the original vector optimization problem;
we also find an entire halfspace in R?, given by (4.61), of objective values that
cannot be achieved.

Scalarization of convex vector optimization problems

Now suppose the vector optimization problem (4.56) is convex. Then the scalarized
problem (4.60) is also convex, since AT fy is a (scalar-valued) convex function (by
the results in §3.6). This means that we can find Pareto optimal points of a convex
vector optimization problem by solving a convex scalar optimization problem. For
each choice of the weight vector A > g« 0 we get a (usually different) Pareto optimal
point.

For convex vector optimization problems we have a partial converse: For every
Pareto optimal point zP°, there is some nonzero A > i~ 0 such that zP° is a solution
of the scalarized problem (4.60). So, roughly speaking, for convex problems the
method of scalarization yields all Pareto optimal points, as the weight vector A
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varies over the K *-nonnegative, nonzero values. We have to be careful here, because
it is not true that every solution of the scalarized problem, with A > g« 0 and A\ # 0,
is a Pareto optimal point for the vector problem. (In contrast, every solution of
the scalarized problem with A >~ 0 is Pareto optimal.)

In some cases we can use this partial converse to find all Pareto optimal points
of a convex vector optimization problem. Scalarization with A >« 0 gives a set
of Pareto optimal points (as it would in a nonconvex vector optimization problem
as well). To find the remaining Pareto optimal solutions, we have to consider
nonzero weight vectors A that satisfy A =g+ 0. For each such weight vector, we
first identify all solutions of the scalarized problem. Then among these solutions we
must check which are, in fact, Pareto optimal for the vector optimization problem.
These ‘extreme’ Pareto optimal points can also be found as the limits of the Pareto
optimal points obtained from positive weight vectors.

To establish this partial converse, we consider the set

A=0+K = {t € R?| fo(x) Xk t for some feasible x}, (4.62)

which consists of all values that are worse than or equal to (with respect to <)
some achievable objective value. While the set O of achievable objective values
need not be convex, the set A is convex, when the problem is convex. Moreover,
the minimal elements of A are exactly the same as the minimal elements of the
set O of achievable values, i.e., they are the same as the Pareto optimal values.
(See exercise 4.53.) Now we use the results of §2.6.3 to conclude that any minimal
element of A minimizes ATz over A for some nonzero A =g~ 0. This means that
every Pareto optimal point for the vector optimization problem is optimal for the
scalarized problem, for some nonzero weight \ =g« 0.

Example 4.10 Minimal upper bound on a set of matrices. We consider the (convex)
vector optimization problem, with respect to the positive semidefinite cone,

minimize (w.r.t. ST) X

subject to XA, i=1,...,m, (4.63)
where A; € S, i = 1,...,m, are given. The constraints mean that X is an upper
bound on the given matrices Ai,..., Am; a Pareto optimal solution of (4.63) is a

minimal upper bound on the matrices.

To find a Pareto optimal point, we apply scalarization: we choose any W € S’ | and
form the problem

minimize  tr(WX)

subject to X = A;, i=1,...,m,
which is an SDP. Different choices for W will, in general, give different minimal
solutions.

(4.64)

The partial converse tells us that if X is Pareto optimal for the vector problem (4.63)
then it is optimal for the SDP (4.64), for some nonzero weight matrix W > 0.
(In this case, however, not every solution of (4.64) is Pareto optimal for the vector
optimization problem.)

We can give a simple geometric interpretation for this problem. We associate with
each A € S, an ellipsoid centered at the origin, given by

Ea={u|u"Au <1},
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Figure 4.10 Geometric interpretation of the problem (4.63). The three
shaded ellipsoids correspond to the data A;, A2, As € S?H_; the Pareto
optimal points correspond to minimal ellipsoids that contain them. The two
ellipsoids, with boundaries labeled X; and X3, show two minimal ellipsoids
obtained by solving the SDP (4.64) for two different weight matrices Wi and
Wa.

so that A < B if and only if £4 C Ep. A Pareto optimal point X for the prob-
lem (4.63) corresponds to a minimal ellipsoid that contains the ellipsoids associated
with Ay,..., Asm. An example is shown in figure 4.10.

Multicriterion optimization

When a vector optimization problem involves the cone K = R, it is called a
multicriterion or multi-objective optimization problem. The components of fy,
say, F,...,Fy, can be interpreted as ¢ different scalar objectives, each of which
we would like to minimize. We refer to F; as the ith objective of the problem. A
multicriterion optimization problem is convex if fi,..., f;, are convex, hy,...,hy
are affine, and the objectives Fi, ..., F, are convex.

Since multicriterion problems are vector optimization problems, all of the ma-
terial of §4.7.1-§4.7.4 applies. For multicriterion problems, though, we can be a
bit more specific in the interpretations. If x is feasible, we can think of F;(x) as
its score or value, according to the ith objective. If x and y are both feasible,
F;(z) < F;(y) means that x is at least as good as y, according to the ith objective;
F;(z) < F;(y) means that x is better than y, or « beats y, according to the ith ob-
jective. If x and y are both feasible, we say that x is better than y, or x dominates
y, if Fj(z) < Fi(y) for i =1,..., ¢, and for at least one j, F;(z) < Fj(y). Roughly
speaking, x is better than y if  meets or beats y on all objectives, and beats it in
at least one objective.

In a multicriterion problem, an optimal point x* satisfies

Fz(x*)SFz(y)a i:17"'7qa
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for every feasible y. In other words, xz* is simultaneously optimal for each of the
scalar problems
minimize  Fj(x)
subject to  fi(z) <0, i=1,...,m
hi(x)=0, i=1,...,p,

for j = 1,...,9. When there is an optimal point, we say that the objectives are
noncompeting, since no compromises have to be made among the objectives; each
objective is as small as it could be made, even if the others were ignored.

A Pareto optimal point zP° satisfies the following: if y is feasible and F;(y) <
F;(zP°) for i = 1,...,q, then F;(aP°) = F;(y), i = 1,...,q. This can be restated
as: a point is Pareto optimal if and only if it is feasible and there is no better
feasible point. In particular, if a feasible point is not Pareto optimal, there is at
least one other feasible point that is better. In searching for good points, then, we
can clearly limit our search to Pareto optimal points.

Trade-off analysis

Now suppose that x and y are Pareto optimal points with, say,

Fi(x) = Fi(y), ieB
Fi(z) > Fi(y), i€,

where AUBUC = {1,...,q}. In other words, A is the set of (indices of) objectives
for which z beats y, B is the set of objectives for which the points x and y are tied,
and C is the set of objectives for which y beats x. If A and C are empty, then
the two points z and y have exactly the same objective values. If this is not the
case, then both A and C' must be nonempty. In other words, when comparing two
Pareto optimal points, they either obtain the same performance (i.e., all objectives
equal), or, each beats the other in at least one objective.

In comparing the point x to y, we say that we have traded or traded off better
objective values for ¢ € A for worse objective values for i € C. Optimal trade-off
analysis (or just trade-off analysis) is the study of how much worse we must do
in one or more objectives in order to do better in some other objectives, or more
generally, the study of what sets of objective values are achievable.

As an example, consider a bi-criterion (i.e., two criterion) problem. Suppose
x is a Pareto optimal point, with objectives F(z) and Fy(x). We might ask how
much larger F5(z) would have to be, in order to obtain a feasible point z with
Fi(z) < Fi(z) — a, where a > 0 is some constant. Roughly speaking, we are asking
how much we must pay in the second objective to obtain an improvement of a in
the first objective. If a large increase in F3 must be accepted to realize a small
decrease in I, we say that there is a strong trade-off between the objectives, near
the Pareto optimal value (Fy(z), Fa(x)). If, on the other hand, a large decrease
in F; can be obtained with only a small increase in F5, we say that the trade-off
between the objectives is weak (near the Pareto optimal value (Fy(z), Fa(z))).

We can also consider the case in which we trade worse performance in the first
objective for an improvement in the second. Here we find how much smaller F5(z)
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can be made, to obtain a feasible point z with Fy(z) < Fi(z) + a, where a > 0
is some constant. In this case we receive a benefit in the second objective, i.e., a
reduction in F5 compared to Fy(z). If this benefit is large (i.e., by increasing Fy
a small amount we obtain a large reduction in Fy), we say the objectives exhibit
a strong trade-off. If it is small, we say the objectives trade off weakly (near the
Pareto optimal value (Fy(x), Fa(z))).

Optimal trade-off surface

The set of Pareto optimal values for a multicriterion problem is called the optimal
trade-off surface (in general, when ¢ > 2) or the optimal trade-off curve (when
q = 2). (Since it would be foolish to accept any point that is not Pareto optimal,
we can restrict our trade-off analysis to Pareto optimal points.) Trade-off analysis
is also sometimes called exploring the optimal trade-off surface. (The optimal trade-
off surface is usually, but not always, a surface in the usual sense. If the problem
has an optimal point, for example, the optimal trade-off surface consists of a single
point, the optimal value.)

An optimal trade-off curve is readily interpreted. An example is shown in
figure 4.11, on page 185, for a (convex) bi-criterion problem. From this curve we
can easily visualize and understand the trade-offs between the two objectives.

e The endpoint at the right shows the smallest possible value of Fy, without
any consideration of Fj.

e The endpoint at the left shows the smallest possible value of F}, without any
consideration of Fy.

e By finding the intersection of the curve with a vertical line at F; = «, we can
see how large F» must be to achieve F} < a.

e By finding the intersection of the curve with a horizontal line at F» = 3, we
can see how large F; must be to achieve Fy < .

e The slope of the optimal trade-off curve at a point on the curve (i.e., a Pareto
optimal value) shows the local optimal trade-off between the two objectives.
Where the slope is steep, small changes in F; are accompanied by large
changes in F5.

e A point of large curvature is one where small decreases in one objective can
only be accomplished by a large increase in the other. This is the prover-
bial knee of the trade-off curve, and in many applications represents a good
compromise solution.

All of these have simple extensions to a trade-off surface, although visualizing a
surface with more than three objectives is difficult.

Scalarizing multicriterion problems

When we scalarize a multicriterion problem by forming the weighted sum objective

q

N fo(x) =D AiFi(x),

i=1
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4.7.6

where A > 0, we can interpret \; as the weight we attach to the ith objective.
The weight \; can be thought of as quantifying our desire to make F; small (or
our objection to having F; large). In particular, we should take A; large if we
want F; to be small; if we care much less about Fj;, we can take \; small. We can
interpret the ratio A;/\; as the relative weight or relative importance of the ith
objective compared to the jth objective. Alternatively, we can think of A;/\; as
exchange rate between the two objectives, since in the weighted sum objective a
decrease (say) in F; by « is considered the same as an increase in Fj in the amount
(/e

These interpretations give us some intuition about how to set or change the
weights while exploring the optimal trade-off surface. Suppose, for example, that
the weight vector A > 0 yields the Pareto optimal point #P°, with objective values
Fi(zP°), ..., Fy(zP°). To find a (possibly) new Pareto optimal point which trades
off a better kth objective value (say), for (possibly) worse objective values for the
other objectives, we form a new weight vector A with

Xk>)‘k7 5\]:)\]7 j;éka jzla"'aqa

i.e., we increase the weight on the kth objective. This yields a new Pareto optimal
point ZP° with Fj(ZP°) < Fj(2P°) (and usually, Fy(ZP°) < Fj(aP°)), i.e., a new
Pareto optimal point with an improved kth objective.

We can also see that at any point where the optimal trade-off surface is smooth,
A gives the inward normal to the surface at the associated Pareto optimal point.
In particular, when we choose a weight vector A and apply scalarization, we obtain
a Pareto optimal point where \ gives the local trade-offs among objectives.

In practice, optimal trade-off surfaces are explored by ad hoc adjustment of the
weights, based on the intuitive ideas above. We will see later (in chapter 5) that
the basic idea of scalarization, 4.e., minimizing a weighted sum of objectives, and
then adjusting the weights to obtain a suitable solution, is the essence of duality.

Examples

Regularized least-squares

We are given A € R™ " and b € R™, and want to choose z € R" taking into
account two quadratic objectives:

o F(x) = ||Az — b||2 = 2T AT Az — 20T Az + bT'b is a measure of the misfit
between Az and b,

o Ih(x) = ||z]|2 = 2Tz is a measure of the size of .

Our goal is to find x that gives a good fit (i.e., small F}) and that is not large (i.e.,
small Fy). We can formulate this problem as a vector optimization problem with
respect to the cone Ri, i.e., a bi-criterion problem (with no constraints):

minimize (w.r.t. Ri) folz) = (F1(z), Fa(x)).
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Figure 4.11 Optimal trade-off curve for a regularized least-squares problem.
The shaded set is the set of achievable values (|| Az —b||3, ||z||3). The optimal
trade-off curve, shown darker, is the lower left part of the boundary.

We can scalarize this problem by taking A1 > 0 and A2 > 0 and minimizing the
scalar weighted sum objective

)\Tf()(l‘) = /\1F1 (x) + /\QFQ(x)
wT (MAT A+ XoD)x — 2007 Az + A\ 107D,

which yields
a(p) = (MATA+ X D) TN AT = (AT A+ pul) "t AT,

where 4 = Ay/A\;. For any p > 0, this point is Pareto optimal for the bi-criterion
problem. We can interpret ;1 = Ao/ as the relative weight we assign Fy compared
to Fl.

This method produces all Pareto optimal points, except two, associated with
the extremes y — oo and p — 0. In the first case we have the Pareto optimal
solution & = 0, which would be obtained by scalarization with A = (0,1). At the
other extreme we have the Pareto optimal solution Atb, where A' is the pseudo-
inverse of A. This Pareto optimal solution is obtained as the limit of the optimal
solution of the scalarized problem as p — 0, i.e., as A — (1,0). (We will encounter
the regularized least-squares problem again in §6.3.2.)

Figure 4.11 shows the optimal trade-off curve and the set of achievable values
for a regularized least-squares problem with problem data A € R'%0*10 p ¢ R0,
(See exercise 4.50 for more discussion.)

Risk-return trade-off in portfolio optimization

The classical Markowitz portfolio optimization problem described on page 155 is
naturally expressed as a bi-criterion problem, where the objectives are the negative
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mean return (since we wish to mazimize mean return) and the variance of the
return: ) "

minimize (w.r.t. RY) (Fi(z), Fo(2)) = (=p' z,27Zx)

subject to 17z =1, z>0.

In forming the associated scalarized problem, we can (without loss of generality)
take Ay =1 and Ay = > 0:

minimize 5’z + pz’ Sz
subject to 1Tz =1, z >0,

which is a QP. In this example too, we get all Pareto optimal portfolios except for
the two limiting cases corresponding to ¢ — 0 and g — co. Roughly speaking, in
the first case we get a maximum mean return, without regard for return variance;
in the second case we form a minimum variance return, without regard for mean
return. Assuming that p, > p, for ¢ # k, i.e., that asset k is the unique asset with
maximum mean return, the portfolio allocation = = ey, is the only one correspond-
ing to & — 0. (In other words, we concentrate the portfolio entirely in the asset
that has maximum mean return.) In many portfolio problems asset n corresponds
to a risk-free investment, with (deterministic) return r¢. Assuming that ¥, with its
last row and column (which are zero) removed, is full rank, then the other extreme
Pareto optimal portfolio is © = e,, i.e., the portfolio is concentrated entirely in the
risk-free asset.

As a specific example, we consider a simple portfolio optimization problem with
4 assets, with price change mean and standard deviations given in the following
table.

Asset P, E;/z
1 12%  20%
2 10%  10%
3 % 5%
4 3% 0%

Asset 4 is a risk-free asset, with a (certain) 3% return. Assets 3, 2, and 1 have
increasing mean returns, ranging from 7% to 12%, as well as increasing standard
deviations, which range from 5% to 20%. The correlation coefficients between the
assets are p1o = 30%, p13 = —40%, and pa3 = 0%.

Figure 4.12 shows the optimal trade-off curve for this portfolio optimization
problem. The plot is given in the conventional way, with the horizontal axis show-
ing standard deviation (i.e., squareroot of variance) and the vertical axis showing
expected return. The lower plot shows the optimal asset allocation vector x for
each Pareto optimal point.

The results in this simple example agree with our intuition. For small risk,
the optimal allocation consists mostly of the risk-free asset, with a mixture of the
other assets in smaller quantities. Note that a mixture of asset 3 and asset 1, which
are negatively correlated, gives some hedging, i.e., lowers variance for a given level
of mean return. At the other end of the trade-off curve, we see that aggressive
growth portfolios (i.e., those with large mean returns) concentrate the allocation
in assets 1 and 2, the ones with the largest mean returns (and variances).
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Figure 4.12 Top. Optimal risk-return trade-off curve for a simple portfolio
optimization problem. The lefthand endpoint corresponds to putting all
resources in the risk-free asset, and so has zero standard deviation. The
righthand endpoint corresponds to putting all resources in asset 1, which
has highest mean return. Bottom. Corresponding optimal allocations.
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Exercises

Basic terminology and optimality conditions

Consider the optimization problem

minimize  fo(x1,x2)
subject to 2x1 +x2 > 1

1 +3x2 > 1

T Z 0, X2 Z 0.

Make a sketch of the feasible set. For each of the following objective functions, give the
optimal set and the optimal value.

(a) fo(z1,22) = 21 + 22.

(b) fo(zi,z2) = —z1 — 2.
(c) fo(z1,22) = 1.

(d) fo(z1,z2) = max{x1,x2}.

(e) fo(z1,z2) = x% + 93&%.

Consider the optimization problem
minimize fo(z) = — >, log(bi — af x)

with domain dom fy = {x | Az < b}, where A € R™*™ (with rows a] ). We assume that
dom fj is nonempty.
Prove the following facts (which include the results quoted without proof on page 141).

(a) dom fy is unbounded if and only if there exists a v # 0 with Av < 0.

(b) fo is unbounded below if and only if there exists a v with Av < 0, Av # 0. Hint.
There exists a v such that Av < 0, Av # 0 if and only if there exists no z > 0
such that ATz = 0. This follows from the theorem of alternatives in example 2.21,
page 50.

(c) If fo is bounded below then its minimum is attained, i.e., there exists an x that
satisfies the optimality condition (4.23).

(d) The optimal set is affine: Xopt = {z* + v | Av = 0}, where z* is any optimal point.
Prove that z* = (1,1/2, —1) is optimal for the optimization problem

minimize  (1/2)2T Pz +q¢ 2 4+
subject to —1<z; <1, i=1,2,3,

where
13 12 -2 —22.0
P=1| 12 17 6|, gq=|-145]|, r=1
—2 6 12 13.0
[P. Parrilo] Symmetries and convex optimization. Suppose G = {Q1,...,Qr} CR" " isa

group, i.e., closed under products and inverse. We say that the function f : R® — R is G-
invariant, or symmetric with respect to G, if f(Q;x) = f(z) holds for all z and i = 1,..., k.
We define = = (1/k) Zle Qix, which is the average of x over its G-orbit. We define the
fized subspace of G as

F={z|Qix==z, i=1,...,k}.

(a) Show that for any z € R", we have T € F.



190

4 Convex optimization problems

(b)
(c)

Show that if f : R" — R is convex and G-invariant, then f(z) < f(z).

We say the optimization problem

minimize  fo(x)
subject to  fi(z) <0, i=1,....m

is G-invariant if the objective fo is G-invariant, and the feasible set is G-invariant,
which means

fori=1,...,k. Show that if the problem is convex and G-invariant, and there exists
an optimal point, then there exists an optimal point in F. In other words, we can
adjoin the equality constraints = € F to the problem, without loss of generality.

As an example, suppose f is convex and symmetric, i.e., f(Pz) = f(z) for every
permutation P. Show that if f has a minimizer, then it has a minimizer of the form
al. (This means to minimize f over z € R", we can just as well minimize f(¢1)
over t € R.)

4.5 Equivalent conver problems. Show that the following three convex problems are equiva-

lent.

Carefully explain how the solution of each problem is obtained from the solution of

the other problems. The problem data are the matrix A € R™*™ (with rows a; ), the
vector b € R™, and the constant M > 0.

(a)

(c)

The robust least-squares problem
minimize 27;1 dlalz — b)),

with variable x € R", where ¢ : R — R is defined as

. u? lul < M
$lu) = { M@Ju|— M) |u| > M.

(This function is known as the Huber penalty function; see §6.1.2.)

The least-squares problem with variable weights

minimize Y. (af x — b;)?/(wi + 1) + M*1Tw
subject to w > 0,

with variables z € R™ and w € R™, and domain D = {(z,w) € R®"xR™ | w > —1}.
Hint. Optimize over w assuming x is fixed, to establish a relation with the problem
in part (a).

(This problem can be interpreted as a weighted least-squares problem in which we
are allowed to adjust the weight of the ith residual. The weight is one if w; = 0, and
decreases if we increase w;. The second term in the objective penalizes large values
of w, i.e., large adjustments of the weights.)

The quadratic program

minimize Y7 (uf + 2Mwv;)
subject to —u—vAx—b=<u+v
0=u=<xM1
v > 0.
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Handling convex equality constraints. A convex optimization problem can have only linear
equality constraint functions. In some special cases, however, it is possible to handle
convex equality constraint functions, i.e., constraints of the form h(x) = 0, where h is
convex. We explore this idea in this problem.

Consider the optimization problem

minimize  fo(x)

subject to  fi(z) < i=1,...,m (4.65)

where f; and h are convex functions with domain R"™. Unless h is affine, this is not a
convex optimization problem. Consider the related problem

minimize  fo(z)
subject to  fi(z) <0, ¢=1,...,m, (4.66)
h(z) <0,

where the convex equality constraint has been relaxed to a convex inequality. This prob-
lem is, of course, convex.

Now suppose we can guarantee that at any optimal solution x* of the convex prob-
lem (4.66), we have h(z*) = 0, i.e., the inequality h(xz) < 0 is always active at the solution.
Then we can solve the (nonconvex) problem (4.65) by solving the convex problem (4.66).

Show that this is the case if there is an index r such that

e fo is monotonically increasing in x,
e fi,..., fm are nondecreasing in x,

e h is monotonically decreasing in x,.

We will see specific examples in exercises 4.31 and 4.58.

Convex-concave fractional problems. Consider a problem of the form
minimize  fo(z)/(c"x + d)
subject to  fi(z) <0, i=1,...,m
Ax =10
where fo, fi,..., fm are convex, and the domain of the objective function is defined as

{zx € dom fo | Tz +d >0}

(a) Show that this is a quasiconvex optimization problem.

(b) Show that the problem is equivalent to

minimize  go(y,t)

subject to  gi(y,t) <0, i=1,...,m
Ay =1t
Ty+dt =1,

where g; is the perspective of f; (see §3.2.6). The variables are y € R™ and ¢t € R.
Show that this problem is convex.

(c) Following a similar argument, derive a convex formulation for the convez-concave
fractional problem

/()

minimize (
<0, i=1,....m
b

fo(x)
subject to ( )
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where fo, f1,..., fm are convex, h is concave, the domain of the objective function
is defined as {z € dom fo Ndomh | h(xz) > 0} and fo(x) > 0 everywhere.

As an example, apply your technique to the (unconstrained) problem with
fo(@) = (tr F(2))/m,  h(z) = (det(F(x))"/™,

with dom(fo/h) = {z | F(z) > 0}, where F(z) = Fo + z1F1 + - - - + z, F), for given
F; € S™. In this problem, we minimize the ratio of the arithmetic mean over the
geometric mean of the eigenvalues of an affine matrix function F(x).

Linear optimization problems

4.8 Some simple LPs. Give an explicit solution of each of the following LPs.

(a)

(b)

Minimizing a linear function over an affine set.

minimize ¢’z
subject to Az =b.

Minimizing a linear function over a halfspace.
e T
minimize ¢’z
subject to aTxz < b,
where a # 0.

Minimizing a linear function over a rectangle.

minimize cTx

subject to | <z X u,
where [ and w satisfy [ < u.
Minimizing a linear function over the probability simplex.

minimize ¢’z
subject to 1Tz =1, z>0.

What happens if the equality constraint is replaced by an inequality 17z < 1?7

We can interpret this LP as a simple portfolio optimization problem. The vector
x represents the allocation of our total budget over different assets, with z; the
fraction invested in asset ¢. The return of each investment is fixed and given by —c;,
so our total return (which we want to maximize) is —c” z. If we replace the budget
constraint 17z = 1 with an inequality 17z < 1, we have the option of not investing
a portion of the total budget.

Minimizing a linear function over a unit box with a total budget constraint.
minimize ¢’z
subject to 1Tz =, 0=z =<1,
where « is an integer between 0 and n. What happens if « is not an integer (but
satisfies 0 < a < n)? What if we change the equality to an inequality 17z < a?
Minimizing a linear function over a unit box with a weighted budget constraint.
minimize ¢’z
subject to dTz=a, 0=z =<1,

with d = 0, and 0 < a < 174.
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Square LP. Consider the LP
minimize Tz
subject to Ax <b

with A square and nonsingular. Show that the optimal value is given by

- cTA™ % A Te=<0
P=1 —x otherwise.

Converting general LP to standard form. Work out the details on page 147 of §4.3.
Explain in detail the relation between the feasible sets, the optimal solutions, and the
optimal values of the standard form LP and the original LP.

Problems involving ¢1- and {~-norms. Formulate the following problems as LPs. Explain
in detail the relation between the optimal solution of each problem and the solution of its
equivalent LP.

(a) Minimize ||Az — b||cc (oo-norm approximation).

(b) Minimize ||Az — b||1 (£1-norm approximation).

(¢) Minimize ||Az — b||1 subject to ||z]|e < 1.

(d) Minimize ||z||1 subject to ||Az — bllec < 1.

(e) Minimize |[|Az — b1 + ||z|co-
In each problem, A € R™*™ and b € R™ are given. (See §6.1 for more problems involving
approximation and constrained approximation.)

Network flow problem. Consider a network of n nodes, with directed links connecting each
pair of nodes. The variables in the problem are the flows on each link: z;; will denote the
flow from node i to node j. The cost of the flow along the link from node i to node j is
given by c;;jx;;, where c;; are given constants. The total cost across the network is

n
C = E CijTij-

ij=1

Each link flow z;; is also subject to a given lower bound [;; (usually assumed to be
nonnegative) and an upper bound wu;;.

The external supply at node ¢ is given by b;, where b; > 0 means an external flow enters
the network at node i, and b; < 0 means that at node 4, an amount |b;| flows out of the

network. We assume that 176 = 0, i.e., the total external supply equals total external
demand. At each node we have conservation of flow: the total flow into node 4 along links
and the external supply, minus the total flow out along the links, equals zero.

The problem is to minimize the total cost of flow through the network, subject to the
constraints described above. Formulate this problem as an LP.

Robust LP with interval coefficients. Consider the problem, with variable z € R",

minimize ¢’z
subject to Az < bfor all A € A,

where A C R™*"™ is the set
A:{AERmxn|Aij*Vv¢'jSAZ']'SAZ'J'+‘/¢]', izl,...,m, ]:1,,7’1,}

(The matrices A and V are given.) This problem can be interpreted as an LP where each
coefficient of A is only known to lie in an interval, and we require that  must satisfy the
constraints for all possible values of the coefficients.

Express this problem as an LP. The LP you construct should be efficient, i.e., it should
not have dimensions that grow exponentially with n or m.
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4.14

4.15

4.16

Approximating a matriz in infinity norm. The £o-norm induced norm of a matrix A €
R™*", denoted ||A||o, is given by

1Az -
T || oo
[|[A|los = sup = max |aij]-
2#0 HJIHOO i:l,m,rnvZ

j=1
This norm is sometimes called the max-row-sum norm, for obvious reasons (see §A.1.5).
Consider the problem of approximating a matrix, in the max-row-sum norm, by a linear
combination of other matrices. That is, we are given k + 1 matrices Ao, ..., Ar € R™*",
and need to find z € R® that minimizes

|[Ao + 141 + - + T Ak ||oo-

Express this problem as a linear program. Explain the significance of any extra variables
in your LP. Carefully explain how your LP formulation solves this problem, e.g., what is
the relation between the feasible set for your LP and this problem?

Relaxation of Boolean LP. In a Boolean linear program, the variable x is constrained to
have components equal to zero or one:

minimize ¢’z
subject to Az <b (4.67)
z; € {0,1}, i=1,...,n.

In general, such problems are very difficult to solve, even though the feasible set is finite
(containing at most 2™ points).

In a general method called relazation, the constraint that x; be zero or one is replaced
with the linear inequalities 0 < z; < 1:

minimize ¢’z
subject to Az <b (4.68)
0<az; <1, i=1,...,n.

We refer to this problem as the LP relazation of the Boolean LP (4.67). The LP relaxation
is far easier to solve than the original Boolean LP.

(a) Show that the optimal value of the LP relaxation (4.68) is a lower bound on the
optimal value of the Boolean LP (4.67). What can you say about the Boolean LP
if the LP relaxation is infeasible?

(b) It sometimes happens that the LP relaxation has a solution with z; € {0,1}. What
can you say in this case?

Minimum fuel optimal control. We consider a linear dynamical system with state z(¢t) €
R", t = 0,...,N, and actuator or input signal u(t) € R, for t = 0,...,N — 1. The
dynamics of the system is given by the linear recurrence

z(t+1) = Az(t) + bu(t), ¢t=0,...,N—1,

where A € R™™ and b € R" are given. We assume that the initial state is zero, i.e.,
z(0) =0.

The minimum fuel optimal control problem is to choose the inputs u(0),...,u(N — 1) so
as to minimize the total fuel consumed, which is given by
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subject to the constraint that (N) = xdes, where N is the (given) time horizon, and
Zdes € R™ is the (given) desired final or target state. The function f : R — R is the fuel
use map for the actuator, and gives the amount of fuel used as a function of the actuator
signal amplitude. In this problem we use

_ ) lal la <1
ﬂ@_{2a—1|@>1

This means that fuel use is proportional to the absolute value of the actuator signal, for
actuator signals between —1 and 1; for larger actuator signals the marginal fuel efficiency
is half.

Formulate the minimum fuel optimal control problem as an LP.

4.17 Optimal activity levels. We consider the selection of n nonnegative activity levels, denoted
Z1,...,Zn. These activities consume m resources, which are limited. Activity j consumes
Aijx; of resource i, where A;; are given. The total resource consumption is additive, so
the total of resource ¢ consumed is ¢; = E?:1 A;jx;. (Ordinarily we have A;; > 0, i.e.,
activity j consumes resource i. But we allow the possibility that A;; < 0, which means

that activity j actually generates resource i as a by-product.) Each resource consumption

is limited: we must have ¢; < ¢***, where ¢;*** are given. Each activity generates revenue,

which is a piecewise-linear concave function of the activity level:

I Pig; +p5 (25 —q;) T > g5

Here p; > 0 is the basic price, ¢g; > 0 is the quantity discount level, and pf}isc is the
quantity discount price, for (the product of) activity j. (We have 0 < p?isc < p;j.) The
total revenue is the sum of the revenues associated with each activity, i.e., Z;Zl ri(z;).
The goal is to choose activity levels that maximize the total revenue while respecting the
resource limits. Show how to formulate this problem as an LP.

4.18 Separating hyperplanes and spheres. Suppose you are given two sets of points in R",
{v',v?,..., 0"} and {w’,w?, ..., w"}. Formulate the following two problems as LP fea-
sibility problems.

(a) Determine a hyperplane that separates the two sets, i.e., find a € R" and b € R
with a # 0 such that

afv'<b, i=1,... K, afw'>b, i=1,..., L.

Note that we require a # 0, so you have to make sure that your formulation excludes
the trivial solution a = 0, b = 0. You can assume that

12 oKt w? o Wk

v
rank 1 1. 1 1 1. 1 =n+1

(i.e., the affine hull of the K + L points has dimension n).

(b) Determine a sphere separating the two sets of points, i.e., find z. € R"™ and R > 0
such that

v — x| <R, i=1,..., K, |w' — el >R, i=1,...,L.
(Here z. is the center of the sphere; R is its radius.)

(See chapter 8 for more on separating hyperplanes, separating spheres, and related topics.)
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4.19 Consider the problem
minimize  ||Az — b||1/(cTx + d)
subject to ||zl < 1,
where A € R™*" b e R™, c € R", and d € R. We assume that d > ||c||1, which implies
that ¢"x + d > 0 for all feasible z.
(a) Show that this is a quasiconvex optimization problem.

(b) Show that it is equivalent to the convex optimization problem

minimize  ||Ay — bt||1
subject to  ||ylee < ¢
Ay+dt =1,

with variables y € R", t € R.

4.20 Power assignment in a wireless communication system. We consider n transmitters with
powers pi,...,pn > 0, transmitting to n receivers. These powers are the optimization
variables in the problem. We let G € R™*" denote the matrix of path gains from the
transmitters to the receivers; G;; > 0 is the path gain from transmitter j to receiver i.
The signal power at receiver i is then S; = Gi;p;, and the interference power at receiver 4
isl; = Zk# Gikpr. The signal to interference plus noise ratio, denoted SINR, at receiver
i, is given by S;/(I; + o), where o; > 0 is the (self-) noise power in receiver i. The
objective in the problem is to maximize the minimum SINR ratio, over all receivers, i.e.,

to maximize
i

z:r{fln,n L, + o; '

There are a number of constraints on the powers that must be satisfied, in addition to the
obvious one p; > 0. The first is a maximum allowable power for each transmitter, i.e.,
pi < P where P > 0 is given. In addition, the transmitters are partitioned into
groups, with each group sharing the same power supply, so there is a total power constraint
for each group of transmitter powers. More precisely, we have subsets Ki,..., K, of
{1,...,n} with K1 U---UK,, ={1,...,n}, and K;NK; =0 if j # [. For each group Kj,
the total associated transmitter power cannot exceed PP > 0:

Zpkgpﬁp, l=1,...,m.
kEK,

Finally, we have a limit P;° > 0 on the total received power at each receiver:

ZGikpk <P i=1,...,n

k=1

(This constraint reflects the fact that the receivers will saturate if the total received power
is too large.)

Formulate the SINR maximization problem as a generalized linear-fractional program.
Quadratic optimization problems
4.21 Some simple QCQPs. Give an explicit solution of each of the following QCQPs.
(a) Minimizing a linear function over an ellipsoid centered at the origin.
minimize Tz
subject to zT Az < 1,

where A € ST, and ¢ # 0. What is the solution if the problem is not convex
(A ¢Sy
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(b) Minimizing a linear function over an ellipsoid.
minimize ¢’z
subject to  (z — z.)T Az — z.) < 1,

where A € ST, and c # 0.
(¢) Minimizing a quadratic form over an ellipsoid centered at the origin.
minimize 2T Bz
subject to 2T Az <1,

where A € ST, and B € S. Also consider the nonconvex extension with B ¢ ST .
(See §B.1.)

4.22 Consider the QCQP
minimize  (1/2)2” Px +q¢T x4+
subject to 2Tz <1,

with P € S7,. Show that * = —(P 4 M)~ 'q where A = max{0,\} and X is the largest
solution of the nonlinear equation

¢"(P+A)"%qg=1.
4.23 (4-norm approximation via QCQP. Formulate the £4-norm approximation problem
minimize [|Az —blls = (>, (aj @ — bi)4)/4
as a QCQP. The matrix A € R™*™ (with rows a] ) and the vector b € R™ are given.
4.24 Complex £1-, €2- and ls-norm approximation. Consider the problem
minimize [|Az — b||p,

where A € C™*" b € C™, and the variable is x € C". The complex £,-norm is defined

by
m 1/p
Iylly = <Zw|ﬁ>
i=1

forp > 1, and ||y||cc = maxi=1,...,.m |ys|]. For p = 1, 2, and oo, express the complex £,-norm
approximation problem as a QCQP or SOCP with real variables and data.

4.25 Linear separation of two sets of ellipsoids. Suppose we are given K + L ellipsoids
&:{Piquqi\HquSl}, i=1,..., K+ L,

where P; € S". We are interested in finding a hyperplane that strictly separates &1, ...,
Ek from Ex 41, ..., Ex+1L, i.e., we want to compute a € R", b € R such that

aT:rer>Ofo1rx€51LJ---USK7 aTﬂc+b<0f0rx€€K+1U---U5K+L,

or prove that no such hyperplane exists. Express this problem as an SOCP feasibility
problem.

4.26 Hyperbolic constraints as SOC constraints. Verify that x € R", y,z € R satisfy

d'r<yz,  y>0, 220
if and only if

)

Use this observation to cast the following problems as SOCPs.
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4.27

4.28

(a) Mazimizing harmonic mean.
maximize (Z:’;l 1/(alx — b,-))71 )

with domain {2 | Az = b}, where a] is the ith row of A.

(b) Mazximizing geometric mean.
maximize (H:il(aiTw — bl)) Lm ,

with domain {z | Az > b}, where al is the ith row of A.

Matriz fractional minimization via SOCP. Express the following problem as an SOCP:

minimize  (Az + b)T (I + Bdiag(z)BT) ™! (Az + b)
subject to x = 0,

with A € R™*", be R™, Be R™*". The variable is z € R".
Hint. First show that the problem is equivalent to

minimize  v’v 4+ w” diag(x) " tw
subject to v+ Bw = Ax+b
z =0,

with variables v € R™, w,z € R". (If z; = 0 we interpret w?/z; as zero if w; = 0 and as
oo otherwise.) Then use the results of exercise 4.26.
Robust quadratic programming. In §4.4.2 we discussed robust linear programming as an
application of second-order cone programming. In this problem we consider a similar
robust variation of the (convex) quadratic program

minimize  (1/2)z" Pz + ¢Tx + 7

subject to Az <b.

For simplicity we assume that only the matrix P is subject to errors, and the other
parameters (q, r, A, b) are exactly known. The robust quadratic program is defined as

minimize  suppce((1/2)2" Pz + ¢z + 1)
subject to Ax =<b

where £ is the set of possible matrices P.
For each of the following sets £, express the robust QP as a convex problem. Be as specific
as you can. If the problem can be expressed in a standard form (e.g., QP, QCQP, SOCP,
SDP), say so.

(a) A finite set of matrices: &€ = {P1,..., Pk}, where P, € 8%}, i=1,..., K.

(b) A set specified by a nominal value Py € ST plus a bound on the eigenvalues of the
deviation P — Pp:
E={PeS"| I I P—Py2~I}

where v € R and Py € S,

(¢) An ellipsoid of matrices:

K
£ = {POJrZPiui lull2 < 1}.

i=1

You can assume P; € 87,7 =0,..., K.
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Mazimizing probability of satisfying a linear inequality. Let ¢ be a random variable in R™,
normally distributed with mean ¢ and covariance matrix R. Consider the problem

maximize prob(c'z > a)
subject to Fx <g, Ax=hb.

Assuming there exists a feasible point & for which ¢Z& > «, show that this problem is
equivalent to a convex or quasiconvex optimization problem. Formulate the problem as a
QP, QCQP, or SOCP (if the problem is convex), or explain how you can solve it by solving
a sequence of QP, QCQP, or SOCP feasibility problems (if the problem is quasiconvex).

Geometric programming

A heated fluid at temperature T' (degrees above ambient temperature) flows in a pipe
with fixed length and circular cross section with radius r. A layer of insulation, with
thickness w < r, surrounds the pipe to reduce heat loss through the pipe walls. The
design variables in this problem are 7', r, and w.

The heat loss is (approximately) proportional to T'r/w, so over a fixed lifetime, the energy
cost due to heat loss is given by a1 Tr/w. The cost of the pipe, which has a fixed wall
thickness, is approximately proportional to the total material, ¢.e., it is given by asr. The
cost of the insulation is also approximately proportional to the total insulation material,
i.e., azrw (using w < r). The total cost is the sum of these three costs.

The heat flow down the pipe is entirely due to the flow of the fluid, which has a fixed
velocity, i.e., it is given by asTr?. The constants «; are all positive, as are the variables
T, r, and w.

Now the problem: maximize the total heat flow down the pipe, subject to an upper limit
Chmax On total cost, and the constraints

Tmin S T S Tmaxa T'min S r S T'max Wmin S w S Wmax, w S 01’["

Express this problem as a geometric program.

Recursive formulation of optimal beam design problem. Show that the GP (4.46) is equiv-
alent to the GP

minimize vazl w;ih;

subject to  w;/Wmax <1, Wmin/w; <1, i=1,...,N
hi/hmax <1, Amin/hi <1, i=1,...,N
hi/(w,-Smax) S 1, Smmwi/hi S 1, = 1, .. .,N
6iF/(Omaxwihl) <1, i=1,...,N
(2i—1)d¢/v¢+vi+1/v¢§17 iZL...,N
(1 —1/3)di/yi + vit1/yi + yit1/yi <1, i=1,...,N
yl/ymax S 1
Bw;h3d;/(6F)=1, i=1,...,N.

The variables are w;, hi, vi, d;, y; fori =1,..., N.

Approzimating a function as a monomial. Suppose the function f : R" — R is differ-
entiable at a point zo > 0, with f(xo) > 0. How would you find a monomial function

f:R"™ — R such that f(zo) = f(z0) and for z near zo, f(z) is very near f(z)?
Express the following problems as convex optimization problems.

(a) Minimize max{p(z), g(x)}, where p and ¢ are posynomials.

(b) Minimize exp(p(z)) + exp(¢(z)), where p and ¢ are posynomials.

(¢) Minimize p(z)/(r(z) — g(x)), subject to r(z) > g(x), where p,q are posynomials,
and r is a monomial.
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4.34

4.35

4.36

4.37

Log-convezity of Perron-Frobenius eigenvalue. Let A € R™ ™ be an elementwise positive
matrix, 4.e., A;; > 0. (The results of this problem hold for irreducible nonnegative
matrices as well.) Let Ap¢(A) denotes its Perron-Frobenius eigenvalue, i.e., its eigenvalue
of largest magnitude. (See the definition and the example on page 165.) Show that
log Apt(A) is a convex function of log A;;. This means, for example, that we have the
inequality

)‘pf(c) < ()‘pf(A)Apf(B))l/27

where Cy; = (AijBij)*/?, and A and B are elementwise positive matrices.
Hint. Use the characterization of the Perron-Frobenius eigenvalue given in (4.47), or,
alternatively, use the characterization

log A\pt(A) = klirgo(l/k) log(17 AF1).

Signomial and geometric programs. A signomial is a linear combination of monomials of
some positive variables x1,...,x,. Signomials are more general than posynomials, which
are signomials with all positive coefficients. A signomial program is an optimization
problem of the form

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
hi(z) =0, i=1,...,p,

where fo,..., fm and hi,...,h, are signomials. In general, signomial programs are very
difficult to solve.

Some signomial programs can be transformed to GPs, and therefore solved efficiently.
Show how to do this for a signomial program of the following form:

e The objective signomial fj is a posynomial, i.e., its terms have only positive coeffi-
cients.

e FEach inequality constraint signomial f1,..., f,, has exactly one term with a negative
coefficient: f; = p; — ¢; where p; is posynomial, and ¢; is monomial.

e Each equality constraint signomial hi,...,h, has exactly one term with a positive
coefficient and one term with a negative coefficient: h; = r; — s; where r; and s; are
monomials.

Explain how to reformulate a general GP as an equivalent GP in which every posynomial
(in the objective and constraints) has at most two monomial terms. Hint. Express each
sum (of monomials) as a sum of sums, each with two terms.

Generalized posynomials and geometric programming. Let x1, . .., x, be positive variables,
and suppose the functions f; : R® — R, i = 1,...,k, are posynomials of x1,...,x,. If
¢ : RF = R is a polynomial with nonnegative coefficients, then the composition

hz) = o(f1(2), ..., fr(z)) (4.69)

is a posynomial, since posynomials are closed under products, sums, and multiplication
by nonnegative scalars. For example, suppose fi and f2 are posynomials, and consider
the polynomial ¢(z1, z2) = 32722 + 221 + 375 (which has nonnegative coefficients). Then
h =3ffs+2f1 + f3 is a posynomial.

In this problem we consider a generalization of this idea, in which ¢ is allowed to be
a posynomial, i.e., can have fractional exponents. Specifically, assume that ¢ : RF —
R is a posynomial, with all its exponents nonnegative. In this case we will call the
function h defined in (4.69) a generalized posynomial. As an example, suppose fi and fo
are posynomials, and consider the posynomial (with nonnegative exponents) ¢(z1, 22) =
2293232 + 21285 + 2. Then the function

h(z) = 2f1(2)"" f2(2)"? + f1(2) fa(2)*" + 2
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is a generalized posynomial. Note that it is not a posynomial, however (unless fi and fo
are monomials or constants).

A generalized geometric program (GGP) is an optimization problem of the form

minimize  ho(z)
subject to  hi(z) <1, i=1,...,m (4.70)
gl(x):]'? i:17"'7p3

where g1, ..., gp are monomials, and ho, ..., hy are generalized posynomials.

Show how to express this generalized geometric program as an equivalent geometric pro-
gram. Explain any new variables you introduce, and explain how your GP is equivalent
to the GGP (4.70).

Semidefinite programming and conic form problems

4.38 LMIs and SDPs with one variable. The generalized eigenvalues of a matrix pair (4, B),
where A, B € S™, are defined as the roots of the polynomial det(AB — A) (see §A.5.3).

Suppose B is nonsingular, and that A and B can be simultaneously diagonalized by a
congruence, i.e., there exists a nonsingular R € R™*" such that

RTAR = diag(a), = R"BR = diag(b),

where a,b € R™. (A sufficient condition for this to hold is that there exists ¢1, t2 such
that tlA —+ tQB b 0)

(a) Show that the generalized eigenvalues of (A, B) are real, and given by \; = a;/b;,
i=1,...,n.

(b) Express the solution of the SDP

minimize ¢t
subject to tB < A,

with variable ¢t € R, in terms of a and b.
4.39 SDPs and congruence transformations. Consider the SDP
minimize ¢’z
subject to x1F1 +x2Fo+ -+, F + G <0,
with F;,G € 8, ce R™.
(a) Suppose R € R**¥ is nonsingular. Show that the SDP is equivalent to the SDP
minimize ch; 3 y 5
subject to x1F1 + x2Fo+ -+, F + G X0,
where F;, = RTF,R, G = R"GR.

(b) Suppose there exists a nonsingular R such that F; and G are diagonal. Show that
the SDP is equivalent to an LP.

(c) Suppose there exists a nonsingular R such that F; and G have the form
- ail  a; . ~ BI b
FZ{GZT Oti}’ i=1,...,n, G{bT 6},

where i, 8 € R, a;,b € R*~!. Show that the SDP is equivalent to an SOCP with
a single second-order cone constraint.
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4.40 LPs,

(a)
(b)

QPs, QCQPs, and SOCPs as SDPs. Express the following problems as SDPs.

The LP (4.27).

The QP (4.34), the QCQP (4.35) and the SOCP (4.36). Hint. Suppose A € S, .,
C €8S° and B € R"™*°. Then

=0 < C—BTA'B+o.

A B
BT ¢

For a more complete statement, which applies also to singular A, and a proof,
see §A.5.5.

The matrix fractional optimization problem
minimize (Az +b)T F(2)" ' (Az +b)
where A € R™*", b e R,
Fx)=Fo+x1F1+ -+, Fy,

with F; € S™, and we take the domain of the objective to be {z | F((z) > 0}. You
can assume the problem is feasible (there exists at least one x with F'(z) > 0).

4.41 LMI tests for copositive matrices and Po-matrices. A matrix A € S™ is said to be copositive
if 7 Az > 0 for all & > 0 (see exercise 2.35). A matrix A € R™*™ is said to be a Po-
matriz if max;=1,...» x;(Ax); > 0 for all z. Checking whether a matrix is copositive or
a Po-matrix is very difficult in general. However, there exist useful sufficient conditions
that can be verified using semidefinite programming.

(a)

Show that A is copositive if it can be decomposed as a sum of a positive semidefinite
and an elementwise nonnegative matrix:

A=B+C, B»0, Ci;>0, ij=1,...n. (4.71)

Express the problem of finding B and C that satisfy (4.71) as an SDP feasibility
problem.

(b) Show that A is a Pp-matrix if there exists a positive diagonal matrix D such that

DA+ A"D - 0. (4.72)

Express the problem of finding a D that satisfies (4.72) as an SDP feasibility problem.

4.42 Complex LMIs and SDPs. A complex LMI has the form

where I, ..., F,, G are complex n x n Hermitian matrices, i.e., Ffl = F;, G¥ = G, and
x € R™ is a real variable. A complex SDP is the problem of minimizing a (real) linear
function of x subject to a complex LMI constraint.

Complex LMIs and SDPs can be transformed to real LMIs and SDPs, using the fact that

RX  —SX
ax wx |Z0

Y

X0 <= |:

where RX € R™*" is the real part of the complex Hermitian matrix X, and 3X € R"*"
is the imaginary part of X.

Verify this result, and show how to pose a complex SDP as a real SDP.
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Eigenvalue optimization via SDP. Suppose A : R" — S™ is affine, i.e.,
A(x) = Ao+ 2141+ - -+ znAn

where A; € S™. Let A1(z) > Aa(z) > -+ > An(2) denote the eigenvalues of A(z). Show
how to pose the following problems as SDPs.

(a) Minimize the maximum eigenvalue A1 (x).

(b) Minimize the spread of the eigenvalues, A1(z) — Am ().

(¢) Minimize the condition number of A(z), subject to A(z) > 0. The condition number
is defined as k(A(x)) = A1(x)/Am(x), with domain {z | A(z) > 0}. You may assume
that A(z) = 0 for at least one x.

Hint. You need to minimize A/, subject to

0<~I < A(z) 2 AL

Change variables to y = x/v, t = \/v, s = 1/7.
(d) Minimize the sum of the absolute values of the eigenvalues, |A1(z)| + - + | Am ()]
Hint. Express A(x) as A(z) = Ay — A_, where A =0, A_ = 0.

Optimization over polynomials. Pose the following problem as an SDP. Find the polyno-
mial p: R - R,
p(t) =21 + a2t +--- + $2k+1t2k,

that satisfies given bounds I; < p(t;) < w,, at m specified points ¢;, and, of all the
polynomials that satisfy these bounds, has the greatest minimum value:

maximize inf; p(t)
subject to  I; <p(t;)) <wui, 1=1,...,m.

The variables are z € R?**1.

Hint. Use the LMI characterization of nonnegative polynomials derived in exercise 2.37,
part (b).

[Nes00, Par00] Sum-of-squares representation via LMIs. Consider a polynomial p : R" —
R of degree 2k. The polynomial is said to be positive semidefinite (PSD) if p(x) > 0
for all z € R"™. Except for special cases (e.g., n = 1 or k = 1), it is extremely difficult
to determine whether or not a given polynomial is PSD, let alone solve an optimization
problem, with the coefficients of p as variables, with the constraint that p be PSD.

A famous sufficient condition for a polynomial to be PSD is that it have the form

p@) = (@),

for some polynomials g;, with degree no more than k. A polynomial p that has this
sum-of-squares form is called SOS.

The condition that a polynomial p be SOS (viewed as a constraint on its coefficients)
turns out to be equivalent to an LMI, and therefore a variety of optimization problems,
with SOS constraints, can be posed as SDPs. You will explore these ideas in this problem.

(a) Let f1,...,fs be all monomials of degree k or less. (Here we mean monomial in
the standard sense, i.e., 7" -+ - ', where m; € Z,, and not in the sense used in
geometric programming.) Show that if p can be expressed as a positive semidefinite
quadratic form p = fTV f, with V' € 8%, then p is SOS. Conversely, show that if
p is SOS, then it can be expressed as a positive semidefinite quadratic form in the

monomials, i.e., p = fTV f, for some V € S.
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(b) Show that the condition p = fTV f is a set of linear equality constraints relating the
coefficients of p and the matrix V. Combined with part (a) above, this shows that
the condition that p be SOS is equivalent to a set of linear equalities relating V' and
the coefficients of p, and the matrix inequality V > 0.

(¢) Work out the LMI conditions for SOS explicitly for the case where p is polynomial
of degree four in two variables.

Multidimensional moments. The moments of a random variable ¢ on R? are defined as
wi; = Etit), where i,j are nonnegative integers. In this problem we derive necessary
conditions for a set of numbers p;;, 0 < 4,7 < 2k, i + j < 2k, to be the moments of a
distribution on R?.

Let p : R? — R be a polynomial of degree k with coefficients c;;,
X )
p(t) =D Y eitith,

REHDE+2)/2 contains

and let ¢ be a random variable with moments pu;;. Suppose ¢ €
the coeflicients ¢;; in some specific order, and p € REFDER+D contains the moments Lij

in the same order. Show that Ep(t)2 can be expressed as a quadratic form in c:
Ep(t)® = ¢"H(u)e,

where H : RFHDEHD _ gUAD(+2)/2 i¢ 3 Jincar function of x. From this, conclude
that p must satisfy the LMI H(u) > 0.
Remark: For random variables on R, the matrix H can be taken as the Hankel matrix
defined in (4.52). In this case, H(u) > 0 is a necessary and sufficient condition for u to be
the moments of a distribution, or the limit of a sequence of moments. On R?, however,
the LMI is only a necessary condition.

Mazimum determinant positive semidefinite matriz completion. We consider a matrix
A € S", with some entries specified, and the others not specified. The positive semidefinite
matriz completion problem is to determine values of the unspecified entries of the matrix
so that A > 0 (or to determine that such a completion does not exist).

(a) Explain why we can assume without loss of generality that the diagonal entries of
A are specified.

(b) Show how to formulate the positive semidefinite completion problem as an SDP
feasibility problem.

(c) Assume that A has at least one completion that is positive definite, and the diag-
onal entries of A are specified (i.e., fixed). The positive definite completion with
largest determinant is called the mazimum determinant completion. Show that the
maximum determinant completion is unique. Show that if A* is the maximum de-
terminant completion, then (A*)™! has zeros in all the entries of the original matrix
that were not specified. Hint. The gradient of the function f(X) = logdet X is
VF(X)=X"" (see §A.4.1).

(d) Suppose A is specified on its tridiagonal part, i.e., we are given Aqq,..., An, and
Ai2,...,An—1,n. Show that if there exists a positive definite completion of A, then
there is a positive definite completion whose inverse is tridiagonal.

Generalized eigenvalue minimization. Recall (from example 3.37, or §A.5.3) that the
largest generalized eigenvalue of a pair of matrices (4, B) € S* x 8%, is given by

ul Au

maxAyB = T = B—A = .
Amax ( ) il;]g T hu max{\ | det(A ) =0}

As we have seen, this function is quasiconvex (if we take S* x S% | as its domain).
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We consider the problem
minimize Amax(A(z), B(z)) (4.73)
where A, B : R"® — S* are affine functions, defined as
A(z) = Ao+ x1A1+ -+ TpAn, B(z) = Bo+x1B1+ -+ + 2nBn.
with A;, B; € SF.
(a) Give a family of convex functions ¢; : S* x S¥ — R, that satisfy
Amax(A, B) <t <= ¢:(A,B) <0

for all (A, B) € S* x S% . Show that this allows us to solve (4.73) by solving a
sequence of convex feasibility problems.

(b) Give a family of matrix-convex functions ®; : S* x S¥ — S* that satisfy
Amax(A4,B) <t <= ®,(A,B) %0
for all (A, B) € S* x S%_. Show that this allows us to solve (4.73) by solving a

sequence of convex feasibility problems with LMI constraints.

(c) Suppose B(z) = (aTx+b)I, with a # 0. Show that (4.73) is equivalent to the convex
problem
minimize  Amax($A40 + Y141+ -+ yndy)
subject to aTy+bs=1
520,

with variables y € R", s € R.

Generalized fractional programming. Let K € R™ be a proper cone. Show that the
function fo : R™ — R™, defined by

fo(z) =inf{t | Cx +d <k t(Fz +g)}, dom fo ={z | Fx + g >k 0},

with C, F € R™*", d,g € R™, is quasiconvex.

A quasiconvex optimization problem with objective function of this form is called a gen-
eralized fractional program. Express the generalized linear-fractional program of page 152
and the generalized eigenvalue minimization problem (4.73) as generalized fractional pro-
grams.

Vector and multicriterion optimization

Bi-criterion optimization. Figure 4.11 shows the optimal trade-off curve and the set of
achievable values for the bi-criterion optimization problem

minimize (w.r.t. RZ)  (||Az —b|%, ||z]|3),

for some A € R'%!0 p c R Answer the following questions using information from
the plot. We denote by s the solution of the least-squares problem

minimize ||Az — b||3.

(a) What is ||zis]|27
(b) What is ||Azis — b||27
(c) What is ||b]|2?
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(d) Give the optimal value of the problem

minimize  ||Az — b||3
subject to  ||lz||3 = 1.

(e) Give the optimal value of the problem

minimize  ||Az — b||3
subject to  ||lz[|3 < 1.

(f) Give the optimal value of the problem
minimize || Az — b||3 + ||z||3.
(g) What is the rank of A?

Momnotone transformation of objective in vector optimization. Consider the vector opti-
mization problem (4.56). Suppose we form a new vector optimization problem by replacing
the objective fo with ¢ o fo, where ¢ : R? — R satisfies

u 2k v, uF o= ¢(u) Jx ¢(v), ¢(u) # H(v).

Show that a point x is Pareto optimal (or optimal) for one problem if and only if it is
Pareto optimal (optimal) for the other, so the two problems are equivalent. In particular,
composing each objective in a multicriterion problem with an increasing function does
not affect the Pareto optimal points.

Pareto optimal points and the boundary of the set of achievable values. Consider a vector
optimization problem with cone K. Let P denote the set of Pareto optimal values, and
let O denote the set of achievable objective values. Show that P C O Nbd O, i.e., every
Pareto optimal value is an achievable objective value that lies in the boundary of the set
of achievable objective values.

Suppose the vector optimization problem (4.56) is convex. Show that the set
A=0+K ={t e R?| fo(z) <k t for some feasible z},

is convex. Also show that the minimal elements of A are the same as the minimal points
of O.

Scalarization and optimal points. Suppose a (not necessarily convex) vector optimization
problem has an optimal point *. Show that x* is a solution of the associated scalarized
problem for any choice of A == 0. Also show the converse: If a point z is a solution of
the scalarized problem for any choice of A >k« 0, then it is an optimal point for the (not
necessarily convex) vector optimization problem.

Generalization of weighted-sum scalarization. In §4.7.4 we showed how to obtain Pareto
optimal solutions of a vector optimization problem by replacing the vector objective fo :
R” — RY with the scalar objective AT fo, where A =g= 0. Let ¥ : R? — R be a
K-increasing function, i.e., satisfying

u =g v, uFv= ) <P).
Show that any solution of the problem

minimize ¢ (fo(z))
subject to  fi(z) <0, i=1,...,m

8
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is Pareto optimal for the vector optimization problem

minimize (w.r.t. K) fo(z)
subject to fi(z) <0, i=1,....m
hi(z) =0, i=1,...,p.

Note that 1(u) = ATu, where X =+ 0, is a special case.

As a related example, show that in a multicriterion optimization problem (i.e., a vector
optimization problem with fo = F : R" — R?, and K = RY), a unique solution of the
scalar optimization problem

minimize  max;=1,...,q Fi(x)
subject to  fi(z) <0, i=1,...,m
hz(l‘ =0 iZl,...,p,

is Pareto optimal.

Miscellaneous problems

[P. Parrilo] We consider the problem of minimizing the convex function fo : R® — R
over the convex hull of the union of some convex sets, conv (ngl Ci). These sets are
described via convex inequalities,

Ci={z| fij(x) <0, j=1,...,ki},

where f;; : R" — R are convex. Our goal is to formulate this problem as a convex
optimization problem.

The obvious approach is to introduce variables z1,...,z, € R", with ; € C;, 8 € R?
with @ > 0, 170 = 1, and a variable z € R", with = 612 + - -- + ,2,. This equality
constraint is not affine in the variables, so this approach does not yield a convex problem.
A more sophisticated formulation is given by

minimize  fo(x)

subject to  s;fi;(2i/s:) <0, i=1,...,q, j=1,...,k
1Ts=1, s=0
=21+ "+ 2q,

with variables z1,...,2, € R", z € R", and s1,...,5¢ € R. (When s; = 0, we take
sifij(zi/s:) to be 0if z; = 0 and oo if z; # 0.) Explain why this problem is convex, and
equivalent to the original problem.

Capacity of a communication channel. We consider a communication channel, with input
X(t) € {1,...,n}, and output Y(t) € {1,...,m}, for t = 1,2,... (in seconds, say). The
relation between the input and the output is given statistically:

pi; =prob(Y(t) = X(()=3), i=1,....m, j=1,...,n

The matrix P € R™*™ is called the channel transition matriz, and the channel is called
a discrete memoryless channel.

A famous result of Shannon states that information can be sent over the communication
channel, with arbitrarily small probability of error, at any rate less than a number C,
called the channel capacity, in bits per second. Shannon also showed that the capacity of
a discrete memoryless channel can be found by solving an optimization problem. Assume
that X has a probability distribution denoted x € R", i.e.,

z; =prob(X =3), j=1,...,n.



208

4 Convex optimization problems

4.58

4.59

The mutual information between X and Y is given by

n

I(X;Y) =) > a;pi;log, %~
k=1 g

i=1 j=1
Then the channel capacity C is given by

C=supl(X;Y),

where the supremum is over all possible probability distributions for the input X, i.e.,
over z > 0, 1Tz = 1.

Show how the channel capacity can be computed using convex optimization.

Hint. Introduce the variable y = Pz, which gives the probability distribution of the
output Y, and show that the mutual information can be expressed as

I(X;Y)=c'z - Zyi log, ys,

i=1

where ¢; = Z:’;l pijlogo pij, j=1,...,n.

Optimal consumption. In this problem we consider the optimal way to consume (or spend)
an initial amount of money (or other asset) ko over time. The variables are co,...,cr,
where ¢; > 0 denotes the consumption in period t. The utility derived from a consumption
level ¢ is given by u(c), where v : R — R is an increasing concave function. The present
value of the utility derived from the consumption is given by

T
U= Z Blu(ct),
t=0

where 0 < 8 < 1 is a discount factor.

Let k: denote the amount of money available for investment in period ¢t. We assume
that it earns an investment return given by f(k:), where f : R — R is an increasing,
concave investment return function, which satisfies f(0) = 0. For example if the funds
earn simple interest at rate R percent per period, we have f(a) = (R/100)a. The amount
to be consumed, i.e., ¢, is withdrawn at the end of the period, so we have the recursion

kivi =ke+ f(ke) —ce, t=0,...,T.

The initial sum ko > 0 is given. We require k¢ > 0,¢t = 1,...,7+1 (but more sophisticated
models, which allow k; < 0, can be considered).

Show how to formulate the problem of maximizing U as a convex optimization problem.
Explain how the problem you formulate is equivalent to this one, and exactly how the
two are related.

Hint. Show that we can replace the recursion for k; given above with the inequalities
ki1 <ki+ f(ks) —ce, t=0,...,T.

(Interpretation: the inequalities give you the option of throwing money away in each
period.) For a more general version of this trick, see exercise 4.6.

Robust optimization. In some optimization problems there is uncertainty or variation
in the objective and constraint functions, due to parameters or factors that are either
beyond our control or unknown. We can model this situation by making the objective
and constraint functions fo, ..., fm functions of the optimization variable z € R"™ and
a parameter vector u € R” that is unknown, or varies. In the stochastic optimization
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approach, the parameter vector u is modeled as a random variable with a known dis-
tribution, and we work with the expected values E, f;(z,u). In the worst-case analysis
approach, we are given a set U that u is known to lie in, and we work with the maximum
or worst-case values sup, ¢y fi(z,u). To simplify the discussion, we assume there are no
equality constraints.

(a) Stochastic optimization. We consider the problem

minimize E fo(z, u)

subject to E fi(z,u) <0, i=1,...,m,
where the expectation is with respect to u. Show that if f; are convex in x for each
u, then this stochastic optimization problem is convex.

(b) Worst-case optimization. We consider the problem

minimize  sup, .y fo(z,u)
subject to  sup,cy fi(z,u) <0, i=1,...,m.

Show that if f; are convex in z for each u, then this worst-case optimization problem
is convex.

(c) Finite set of possible parameter values. The observations made in parts (a) and (b)
are most useful when we have analytical or easily evaluated expressions for the
expected values E f;(x,u) or the worst-case values sup, oy fi(z,u).

Suppose we are given the set of possible values of the parameter is finite, i.e., we

have u € {u1,...,un}. For the stochastic case, we are also given the probabilities
of each value: prob(u = u;) = p;, where p € RV, p = 0, 17p = 1. In the worst-case
formulation, we simply take U € {u1,...,un}.

Show how to set up the worst-case and stochastic optimization problems explicitly
(i.e., give explicit expressions for sup,cy fi and Ey f;).

4.60 Log-optimal investment strategy. We consider a portfolio problem with n assets held over
N periods. At the beginning of each period, we re-invest our total wealth, redistributing
it over the n assets using a fixed, constant, allocation strategy x € R™, where x > 0,
17z = 1. In other words, if W(t — 1) is our wealth at the beginning of period ¢, then
during period t we invest ;W (¢ — 1) in asset 7. We denote by A(t) the total return during
period ¢, i.e., A(t) = W(t)/W(t — 1). At the end of the N periods our wealth has been

multiplied by the factor Hi\;l A(t). We call

N
1
i Z log A(t)
t=1

the growth rate of the investment over the N periods. We are interested in determining
an allocation strategy x that maximizes growth of our total wealth for large V.

We use a discrete stochastic model to account for the uncertainty in the returns. We
assume that during each period there are m possible scenarios, with probabilities 7;,

j = 1,...,m. In scenario j, the return for asset ¢ over one period is given by p;;.
Therefore, the return A(t) of our portfolio during period ¢ is a random variable, with
m possible values pTz, ..., pLx, and distribution

m; = prob(A(t) = p]-Tx), ji=1...,m.

We assume the same scenarios for each period, with (identical) independent distributions.
Using the law of large numbers, we have

N m
lim ~ log (W(N)> — lm =3 logA(t) = ElogA(t) = 3, log(p! ).
t=1 Jj=1

Nooco N W(O) N—)OON
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In other words, with investment strategy x, the long term growth rate is given by
m
Ry, = Zﬂ'j log(pjrx).
j=1

The investment strategy x that maximizes this quantity is called the log-optimal invest-
ment strategy, and can be found by solving the optimization problem

maximize Z;nzl T 10g(Pij)
subject to x>0, 1Tz =1,

with variable x € R".
Show that this is a convex optimization problem.

Optimization with logistic model. A random variable X € {0,1} satisfies

exp(aTz +b)

b(X=1)=p=—"—""F77+—""—
prob( )=» 1+ exp(aTz +b)’

where z € R"™ is a vector of variables that affect the probability, and a and b are known
parameters. We can think of X = 1 as the event that a consumer buys a product, and
x as a vector of variables that affect the probability, e.g., advertising effort, retail price,
discounted price, packaging expense, and other factors. The variable x, which we are to
optimize over, is subject to a set of linear constraints, Fx < g.

Formulate the following problems as convex optimization problems.
(a) Mazimizing buying probability. The goal is to choose z to maximize p.

(b) Mazximizing expected profit. Let cTz+d be the profit derived from selling the product,
which we assume is positive for all feasible x. The goal is to maximize the expected
profit, which is p(c” 2 + d).

Optimal power and bandwidth allocation in a Gaussian broadcast channel. We consider a
communication system in which a central node transmits messages to n receivers. (‘Gaus-
sian’ refers to the type of noise that corrupts the transmissions.) Each receiver channel
is characterized by its (transmit) power level P; > 0 and its bandwidth W; > 0. The
power and bandwidth of a receiver channel determine its bit rate R; (the rate at which
information can be sent) via

R; = a;W;log(1 + B Pi/W5),

where a; and ; are known positive constants. For W; = 0, we take R; = 0 (which is
what you get if you take the limit as W; — 0).

The powers must satisfy a total power constraint, which has the form
P+ -+ P = P,

where P;o¢ > 0 is a given total power available to allocate among the channels. Similarly,
the bandwidths must satisfy

W1+"'+Wn:Wtot7

where Wioe > 0 is the (given) total available bandwidth. The optimization variables in
this problem are the powers and bandwidths, i.e., Pi,..., P,, Wi,..., W,.

The objective is to maximize the total utility,

Zui(Ri),
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where u; : R — R is the utility function associated with the ith receiver. (You can
think of u;(R;) as the revenue obtained for providing a bit rate R; to receiver %, so the
objective is to maximize the total revenue.) You can assume that the utility functions wu;
are nondecreasing and concave.

Pose this problem as a convex optimization problem.

Optimally balancing manufacturing cost and yield. The vector x € R™ denotes the nomi-
nal parameters in a manufacturing process. The yield of the process, i.e., the fraction of
manufactured goods that is acceptable, is given by Y (z). We assume that Y is log-concave
(which is often the case; see example 3.43). The cost per unit to manufacture the product
is given by c¢’'z, where ¢ € R™. The cost per acceptable unit is ¢'z/Y (z). We want to
minimize ¢’ /Y (z), subject to some convex constraints on z such as a linear inequalities
Az < b. (You can assume that over the feasible set we have ¢’z > 0 and Y (z) > 0.)
This problem is mot a convex or quasiconvex optimization problem, but it can be solved
using convex optimization and a one-dimensional search. The basic ideas are given below;
you must supply all details and justification.

(a) Show that the function f: R — R given by
fla) =sup{Y(z) | Az < b, o= a},

which gives the maximum yield versus cost, is log-concave. This means that by
solving a convex optimization problem (in x) we can evaluate the function f.

(b) Suppose that we evaluate the function f for enough values of a to give a good approx-
imation over the range of interest. Explain how to use these data to (approximately)
solve the problem of minimizing cost per good product.

Optimization with recourse. In an optimization problem with recourse, also called two-
stage optimization, the cost function and constraints depend not only on our choice of
variables, but also on a discrete random variable s € {1,...,S}, which is interpreted as
specifying which of S scenarios occurred. The scenario random variable s has known
probability distribution 7, with m; = prob(s =1),i=1,...,S.

In two-stage optimization, we are to choose the values of two variables, x € R"™ and
z € R%. The variable z must be chosen before the particular scenario s is known; the
variable z, however, is chosen after the value of the scenario random variable is known.
In other words, z is a function of the scenario random variable s. To describe our choice
z, we list the values we would choose under the different scenarios, i.e., we list the vectors

21,...,25 € R
Here z3 is our choice of z when s = 3 occurs, and so on. The set of values
n
zeR", 21,...,25 € RY

is called the policy, since it tells us what choice to make for z (independent of which
scenario occurs), and also, what choice to make for z in each possible scenario.

The variable z is called the recourse variable (or second-stage variable), since it allows
us to take some action or make a choice after we know which scenario occurred. In
contrast, our choice of x (which is called the first-stage variable) must be made without
any knowledge of the scenario.

For simplicity we will consider the case with no constraints. The cost function is given by

F:R"xR*x{1,...,5} = R,

where f(xz,z,1) gives the cost when the first-stage choice z is made, second-stage choice
z is made, and scenario i occurs. We will take as the overall objective, to be minimized
over all policies, the expected cost

s
E f(z,2s,8) = me(a:, 2iy1).
i=1
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Suppose that f is a convex function of (z,z), for each scenario ¢ = 1,...,5. Explain
how to find an optimal policy, i.e., one that minimizes the expected cost over all possible
policies, using convex optimization.

Optimal operation of a hybrid vehicle. A hybrid vehicle has an internal combustion engine,
a motor/generator connected to a storage battery, and a conventional (friction) brake. In
this exercise we consider a (highly simplified) model of a parallel hybrid vehicle, in which
both the motor/generator and the engine are directly connected to the drive wheels. The
engine can provide power to the wheels, and the brake can take power from the wheels,
turning it into heat. The motor/generator can act as a motor, when it uses energy stored
in the battery to deliver power to the wheels, or as a generator, when it takes power from
the wheels or engine, and uses the power to charge the battery. When the generator takes
power from the wheels and charges the battery, it is called regenerative braking; unlike
ordinary friction braking, the energy taken from the wheels is stored, and can be used
later. The vehicle is judged by driving it over a known, fixed test track to evaluate its
fuel efficiency.

A diagram illustrating the power flow in the hybrid vehicle is shown below. The arrows
indicate the direction in which the power flow is considered positive. The engine power
Peng, for example, is positive when it is delivering power; the brake power py, is positive
when it is taking power from the wheels. The power preq is the required power at the
wheels. It is positive when the wheels require power (e.g., when the vehicle accelerates,
climbs a hill, or cruises on level terrain). The required wheel power is negative when the
vehicle must decelerate rapidly, or descend a hill.

Engine Brake
l Peng T Por Preq
wheels
T Pmg
Motor/
generator Battery

All of these powers are functions of time, which we discretize in one second intervals, with
t =1,2,...,T. The required wheel power preq(1),...,Preq(T) is given. (The speed of
the vehicle on the track is specified, so together with known road slope information, and
known aerodynamic and other losses, the power required at the wheels can be calculated.)

Power is conserved, which means we have

Preq(t) = Peng(t) + Pmg(t) — po:e(t), t=1,...,T.

The brake can only dissipate power, so we have py,(t) > 0 for each ¢t. The engine can only
provide power, and only up to a given limit Ps.5™, i.e., we have

0 < Ppeng(t) < Pongs t=1,...,T.
The motor/generator power is also limited: pmg must satisfy
PP < pg(t) < Ped>, t=1,...,T.

mg ) mg
power.

The battery charge or energy at time ¢ is denoted E(t), t = 1,...,T + 1. The battery
energy satisfies

E{t+1)=E({) — pmg(t) — nlpme(®)|, t=1,...,T,
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where n > 0 is a known parameter. (The term —pmg(t) represents the energy removed
or added the battery by the motor/generator, ignoring any losses. The term —n|pmg(t)|
represents energy lost through inefficiencies in the battery or motor/generator.)

The battery charge must be between 0 (empty) and its limit Eggy (full), at all times. (If
E(t) = 0, the battery is fully discharged, and no more energy can be extracted from it;
when E(t) = EqgY, the battery is full and cannot be charged.) To make the comparison
with non-hybrid vehicles fair, we fix the initial battery charge to equal the final battery
charge, so the net energy change is zero over the track: E(1) = E(T + 1). We do not
specify the value of the initial (and final) energy.

The objective in the problem (to be minimized) is the total fuel consumed by the engine,
which is

T
Fiotal = Z F(peng(t))7
t=1

where F' : R — R is the fuel use characteristic of the engine. We assume that F' is
positive, increasing, and convex.

Formulate this problem as a convex optimization problem, with variables peng(t), Pme(t),
and ppr(¢t) for t =1,...,T, and E(t) for t = 1,...,T + 1. Explain why your formulation
is equivalent to the problem described above.
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Chapter 5

Duality

The Lagrange dual function

The Lagrangian

We consider an optimization problem in the standard form (4.1):

minimize  fo(z)
subject to  fi(x) <0, i=1,....,m (5.1)
hi(x) =0, i=

with variable 2 € R". We assume its domain D = ()" ;dom f; N (}_, domA;
is nonempty, and denote the optimal value of (5.1) by p*. We do not assume the
problem (5.1) is convex.

The basic idea in Lagrangian duality is to take the constraints in (5.1) into
account by augmenting the objective function with a weighted sum of the constraint
functions. We define the Lagrangian L : R™ x R™ x R? — R associated with the
problem (5.1) as

Lz, A\ v) = fol@)+ D> Aifile) + Y vihi(x),
i—1 i=1

with dom L = D x R™ x RP. We refer to \; as the Lagrange multiplier associated
with the ith inequality constraint f;(x) < 0; similarly we refer to v; as the Lagrange
multiplier associated with the ith equality constraint h;(x) = 0. The vectors A and
v are called the dual variables or Lagrange multiplier vectors associated with the
problem (5.1).
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5.1.2

5.1.3

5.1.4

The Lagrange dual function

We define the Lagrange dual function (or just dual function) g : R™ x RP — R as
the minimum value of the Lagrangian over z: for A € R™, v € RP,

9\ v) = inf L(z,A,v) = inf (fo(x) +D Nfil@) + ) ”ihi($)> :
1=1 =1

When the Lagrangian is unbounded below in z, the dual function takes on the
value —oo. Since the dual function is the pointwise infimum of a family of affine
functions of (), v), it is concave, even when the problem (5.1) is not convex.

Lower bounds on optimal value

The dual function yields lower bounds on the optimal value p* of the problem (5.1):
For any A > 0 and any v we have

g\ v) < p*. (5.2)

This important property is easily verified. Suppose T is a feasible point for the
problem (5.1), i.e., f;(Z) <0 and h;(Z) =0, and A = 0. Then we have

D oNfil@) + Y wiha(@) <0,
=1 i=1

since each term in the first sum is nonpositive, and each term in the second sum is
zero, and therefore

L(z,\,v) = fo(%) + thi(f) + thi(i") < fo(2).

Hence
g\ v) = in%L(m,)\,z/) < L(Z,\v) < fo(Z).
e

Since g(A,v) < fo(Z) holds for every feasible point Z, the inequality (5.2) follows.
The lower bound (5.2) is illustrated in figure 5.1, for a simple problem with z € R
and one inequality constraint.

The inequality (5.2) holds, but is vacuous, when g(A\,v) = —oo. The dual
function gives a nontrivial lower bound on p* only when A > 0 and (\,v) € dom g,
i.e., g(A,v) > —oo. We refer to a pair (A, v) with A > 0 and (\,v) € dom g as dual
feasible, for reasons that will become clear later.

Linear approximation interpretation

The Lagrangian and lower bound property can be given a simple interpretation,
based on a linear approximation of the indicator functions of the sets {0} and —R.
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1 05 0 05 1
X
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Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function fy, and the dashed curve shows the constraint function fi.
The feasible set is the interval [—0.46,0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are * = —0.46, p* = 1.54
(shown as a circle). The dotted curves show L(z, \) for A = 0.1, 0.2,...,1.0.
Each of these has a minimum value smaller than p*, since on the feasible set
(and for A > 0) we have L(z,\) < fo(z).

1.6

1.5/
1.4]
= 13!
>
1.2]

1.1}

) 02 04 \ 06 0.8 1

Figure 5.2 The dual function g for the problem in figure 5.1. Neither fo nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p*, the optimal value of the problem.
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5.1.5

We first rewrite the original problem (5.1) as an unconstrained problem,

minimize fo(w) + X0, I (fi(x)) + S0, To(hi(x)), (5.3)

where I_ : R — R is the indicator function for the nonpositive reals,

0 u<o0
I_(u):{ 00 u;O

and similarly, Iy is the indicator function of {0}. In the formulation (5.3), the func-
tion I_(u) can be interpreted as expressing our irritation or displeasure associated
with a constraint function value u = f;(x): It is zero if fi(z) < 0, and infinite if
fi(z) > 0. In a similar way, Ip(u) gives our displeasure for an equality constraint
value u = h;(z). We can think of 7_ as a “brick wall” or “infinitely hard” displea-
sure function; our displeasure rises from zero to infinite as f;(z) transitions from
nonpositive to positive.

Now suppose in the formulation (5.3) we replace the function I_(u) with the
linear function A;u, where A; > 0, and the function Iy(u) with v;u. The objective
becomes the Lagrangian function L(z, A, v), and the dual function value g(\,v) is
the optimal value of the problem

minimize L(z, \,v) = fo(z) + >y Nifi(z) + Y0 vihi(). (5.4)

In this formulation, we use a linear or “soft” displeasure function in place of I_
and Iy. For an inequality constraint, our displeasure is zero when f;(x) = 0, and is
positive when f;(z) > 0 (assuming A; > 0); our displeasure grows as the constraint
becomes “more violated”. Unlike the original formulation, in which any nonpositive
value of f;(x) is acceptable, in the soft formulation we actually derive pleasure from
constraints that have margin, i.e., from f;(z) < 0.

Clearly the approximation of the indicator function I_(u) with a linear function
Aju is rather poor. But the linear function is at least an underestimator of the
indicator function. Since A\ju < I_(u) and v;u < Ip(u) for all u, we see immediately
that the dual function yields a lower bound on the optimal value of the original
problem.

The idea of replacing the “hard” constraints with “soft” versions will come up
again when we consider interior-point methods (§11.2.1).

Examples

In this section we give some examples for which we can derive an analytical ex-
pression for the Lagrange dual function.

Least-squares solution of linear equations

We consider the problem
minimize 27z

subject to Ax = b, (5.5)

where A € RP*". This problem has no inequality constraints and p (linear) equality
constraints. The Lagrangian is L(z,v) = 272 + vT(Az — b), with domain R" x
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RP. The dual function is given by g(v) = inf, L(z,v). Since L(x,v) is a convex
quadratic function of x, we can find the minimizing x from the optimality condition

V.L(z,v) =2z + ATv =0,
which yields z = —(1/2) ATv. Therefore the dual function is
gw) = L(—-(1/2)ATv,v) = —(1/4)vT AATY — b7,

which is a concave quadratic function, with domain R?. The lower bound prop-
erty (5.2) states that for any v € RP, we have

—(1/4)vTAATY — by < inf{zTx | Az = b}.

Standard form LP

Consider an LP in standard form,

T

minimize c'x
subject to Az =1b (5.6)
z = 0,
which has inequality constraint functions f;(z) = —x;, ¢ = 1,...,n. To form

the Lagrangian we introduce multipliers A; for the n inequality constraints and
multipliers v; for the equality constraints, and obtain

Lz, \v) =clow — Z Nx; + v (Ax —b) = b v+ (c+ ATv — \)Ta.

i=1
The dual function is

g\ v) =inf Lz, \,v) = =bTv +inf(c + ATv — Nz,

which is easily determined analytically, since a linear function is bounded below
only when it is identically zero. Thus, g(\,v) = —oo except when ¢+ ATv — X\ = 0,
in which case it is —b7v:

3T T, _
g()vy):{ b'v A'v—-—A+c¢c=0

—o00  otherwise.

Note that the dual function g is finite only on a proper affine subset of R™ x R”.
We will see that this is a common occurrence.

The lower bound property (5.2) is nontrivial only when A and v satisfy A = 0
and ATv — XA 4+ ¢ = 0. When this occurs, —bT v is a lower bound on the optimal
value of the LP (5.6).

Two-way partitioning problem
We consider the (nonconvex) problem

minimize T Wz
subject to 2?2 =1, i=1,...,n,
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where W € S™. The constraints restrict the values of z; to 1 or —1, so the problem
is equivalent to finding the vector with components +1 that minimizes 7 Wx. The
feasible set here is finite (it contains 2" points) so this problem can in principle
be solved by simply checking the objective value of each feasible point. Since the
number of feasible points grows exponentially, however, this is possible only for
small problems (say, with n < 30). In general (and for n larger than, say, 50) the
problem (5.7) is very difficult to solve.

We can interpret the problem (5.7) as a two-way partitioning problem on a set
of n elements, say, {1,...,n}: A feasible z corresponds to the partition

{1,...,77,} = {Z'|{Ei:—1} U {Z‘.’Elzl}

The matrix coefficient W;; can be interpreted as the cost of having the elements %
and j in the same partition, and —W;; is the cost of having 7 and j in different
partitions. The objective in (5.7) is the total cost, over all pairs of elements, and
the problem (5.7) is to find the partition with least total cost.

We now derive the dual function for this problem. The Lagrangian is

L(z,v) = 2TWaz+ Z vi(z? —1)
i=1

= 2T(W + diag(v))z — 17w
We obtain the Lagrange dual function by minimizing over x:
g(v) = infa? (W +diag(v))z —17v

B —1Tv W +diag(v) = 0
o —oo  otherwise,

where we use the fact that the infimum of a quadratic form is either zero (if the

form is positive semidefinite) or —oo (if the form is not positive semidefinite).
This dual function provides lower bounds on the optimal value of the difficult

problem (5.7). For example, we can take the specific value of the dual variable

v=—Amin(W)1,
which is dual feasible, since
W + diag(v) = W — Apin(W)I = 0.
This yields the bound on the optimal value p*

p* > 1T = nhpin (W), (5.8)

Remark 5.1 This lower bound on p* can also be obtained without using the Lagrange
dual function. First, we replace the constraints 3 = 1,...,z2 = 1 with Z:.L:l z? =n,
to obtain the modified problem

minimize 2T Wz

subject to 2 =n. (5.9)

n
i=1
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The constraints of the original problem (5.7) imply the constraint here, so the optimal
value of the problem (5.9) is a lower bound on p*, the optimal value of (5.7). But the
modified problem (5.9) is easily solved as an eigenvalue problem, with optimal value
TL)\min (W) .

The Lagrange dual function and conjugate functions

Recall from §3.3 that the conjugate f* of a function f: R™ — R is given by

= swp (y'z—f(2)).

redom f

The conjugate function and Lagrange dual function are closely related. To see one
simple connection, consider the problem

minimize  f(x)
subject to =z =10

(which is not very interesting, and solvable by inspection). This problem has
Lagrangian L(x,v) = f(z) + vTz, and dual function

g(v) =inf (f(z) +v7z) = —sup ((-1)"z ~ f(2)) = —f*(-v).

T T

More generally (and more usefully), consider an optimization problem with
linear inequality and equality constraints,

minimize  fo(z)
subject to Az <b (5.10)
Cx=d.

Using the conjugate of fy we can write the dual function for the problem (5.10) as
g\ v) = igf (fo(z) + AT (Az — b) + " (Cz — d))
= b'A—d"v+ inf (folz) + (ATA+ CTv)Ta)
= —b'N—dTv— fi(—ATA - CTv). (5.11)
The domain of g follows from the domain of fj:
domg = {(\,v)| — ATA - CTv € dom f}}.
Let us illustrate this with a few examples.

Equality constrained norm minimization

Consider the problem
minimize ||z

subject to Az = b, (5-12)
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where || - || is any norm. Recall (from example 3.26 on page 93) that the conjugate
of fo=|- || is given by

0yl <1
oo otherwise,

fo(y) —{

the indicator function of the dual norm unit ball.
Using the result (5.11) above, the dual function for the problem (5.12) is given
by
by ATy <1
—oo  otherwise.

o) =t~ fj(-4T) = {

Entropy maximization

Consider the entropy maximization problem
minimize  fo(z) = >, x;logz;
subject to Az <Xb (5.13)

1Tz =1

where dom fy = R/ ,. The conjugate of the negative entropy function ulogu,
with scalar variable u, is e?~! (see example 3.21 on page 91). Since fy is a sum of
negative entropy functions of different variables, we conclude that its conjugate is

fi) =Y e,
i=1

with dom fj = R". Using the result (5.11) above, the dual function of (5.13) is
given by

n n
gAv) = bA—v - Ze—a?,\—u—1 =-b'N—p—ev! Z e~ A
i=1 Pt

where a; is the ith column of A.
Minimum volume covering ellipsoid
Consider the problem with variable X € S™,

minimize  fo(X) = logdet X !

subject to al Xa; <1, i=1,...,m, (5.14)

where dom fo = S/, . The problem (5.14) has a simple geometric interpretation.
With each X € S | we associate the ellipsoid, centered at the origin,

Ex ={z| ' X2<1}.

The volume of this ellipsoid is proportional to (det X _1)1/2, so the objective
of (5.14) is, except for a constant and a factor of two, the logarithm of the volume
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of £x. The constraints of the problem (5.14) are that a; € £x. Thus the prob-
lem (5.14) is to determine the minimum volume ellipsoid, centered at the origin,
that includes the points aq, ..., am,.

The inequality constraints in problem (5.14) are affine; they can be expressed
as

tr ((a;a] )X) < 1.
In example 3.23 (page 92) we found that the conjugate of fj is
fo(Y) =logdet(—Y)™! —n,

with dom f§ = —S’ | . Applying the result (5.11) above, the dual function for the
problem (5.14) is given by

_ [ logdet (3o, Miaal) —1TA+n 37, Naal =0

9N = { —00 otherwise. (5.15)

Thus, for any A > 0 with 2111 )\iaiazT > 0, the number

log det <Z Amm?) —1"X+n

i=1

is a lower bound on the optimal value of the problem (5.14).

The Lagrange dual problem

For each pair (A, v) with A > 0, the Lagrange dual function gives us a lower bound
on the optimal value p* of the optimization problem (5.1). Thus we have a lower
bound that depends on some parameters A, v. A natural question is: What is the
best lower bound that can be obtained from the Lagrange dual function?

This leads to the optimization problem

maximize g(\,v)
subject to A = 0. (5.16)
This problem is called the Lagrange dual problem associated with the problem (5.1).
In this context the original problem (5.1) is sometimes called the primal problem.
The term dual feasible, to describe a pair (A, v) with A = 0 and g(\,v) > —o0,
now makes sense. It means, as the name implies, that (A, v) is feasible for the dual
problem (5.16). We refer to (A*, v*) as dual optimal or optimal Lagrange multipliers
if they are optimal for the problem (5.16).

The Lagrange dual problem (5.16) is a convex optimization problem, since the
objective to be maximized is concave and the constraint is convex. This is the case
whether or not the primal problem (5.1) is convex.
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5.2.1

Making dual constraints explicit

The examples above show that it is not uncommon for the domain of the dual
function,

domg={(\,v) | g(\,v) > —o0},

to have dimension smaller than m + p. In many cases we can identify the affine
hull of dom g, and describe it as a set of linear equality constraints. Roughly
speaking, this means we can identify the equality constraints that are ‘hidden’ or
‘implicit’ in the objective g of the dual problem (5.16). In this case we can form
an equivalent problem, in which these equality constraints are given explicitly as
constraints. The following examples demonstrate this idea.

Lagrange dual of standard form LP
On page 219 we found that the Lagrange dual function for the standard form LP

T

minimize c¢'x
subject to Ax =b (5.17)
x>0

is given by
Ty ATy —A4+¢=0
—00 otherwise.

s ={

Strictly speaking, the Lagrange dual problem of the standard form LP is to maxi-
mize this dual function g subject to A = 0, i.e.,

aximize  g(\,v) = 0"y ATy —X+c¢=0
maxmze = S = 1 —0o otherwise (5.18)

subject to A > 0.

Here g is finite only when A”v — X\ 4+ ¢ = 0. We can form an equivalent problem
by making these equality constraints explicit:

maximize —bTv
subject to ATv —X+¢=0 (5.19)
A=0.

This problem, in turn, can be expressed as

maximize —bTv

subject to  ATv + ¢ = 0, (5.20)

which is an LP in inequality form.

Note the subtle distinctions between these three problems. The Lagrange dual
of the standard form LP (5.17) is the problem (5.18), which is equivalent to (but
not the same as) the problems (5.19) and (5.20). With some abuse of terminology,
we refer to the problem (5.19) or the problem (5.20) as the Lagrange dual of the
standard form LP (5.17).
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Lagrange dual of inequality form LP

In a similar way we can find the Lagrange dual problem of a linear program in
inequality form
minimize c’x

subject to Az <b. (5:21)

The Lagrangian is
L(z,\) = T2 + AT (Az —b) = —b" A+ (AT A+ ¢)Tz,
so the dual function is
g(\) = inf L(z,}) = —bTA+ igf(ATA +o)Ta.

The infimum of a linear function is —oo, except in the special case when it is
identically zero, so the dual function is

o= PN AT Ee=0
9N = o otherwise.

The dual variable A is dual feasible if A = 0 and ATA 4+ ¢ = 0.

The Lagrange dual of the LP (5.21) is to maximize g over all A > 0. Again
we can reformulate this by explicitly including the dual feasibility conditions as
constraints, as in

maximize —bT A
subject to ATA+c¢=0 (5.22)
A= 0,

which is an LP in standard form.

Note the interesting symmetry between the standard and inequality form LPs
and their duals: The dual of a standard form LP is an LP with only inequality
constraints, and vice versa. One can also verify that the Lagrange dual of (5.22) is
(equivalent to) the primal problem (5.21).

Weak duality

The optimal value of the Lagrange dual problem, which we denote d*, is, by def-
inition, the best lower bound on p* that can be obtained from the Lagrange dual
function. In particular, we have the simple but important inequality

< p*, (5.23)

which holds even if the original problem is not convex. This property is called weak
duality.

The weak duality inequality (5.23) holds when d* and p* are infinite. For
example, if the primal problem is unbounded below, so that p* = —oo, we must
have d* = —o0, i.e., the Lagrange dual problem is infeasible. Conversely, if the
dual problem is unbounded above, so that d* = oo, we must have p* = oo, i.e., the
primal problem is infeasible.
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5.2.3

We refer to the difference p* — d* as the optimal duality gap of the original
problem, since it gives the gap between the optimal value of the primal problem
and the best (i.e., greatest) lower bound on it that can be obtained from the
Lagrange dual function. The optimal duality gap is always nonnegative.

The bound (5.23) can sometimes be used to find a lower bound on the optimal
value of a problem that is difficult to solve, since the dual problem is always convex,
and in many cases can be solved efficiently, to find d*. As an example, consider
the two-way partitioning problem (5.7) described on page 219. The dual problem
is an SDP,

maximize —17v
subject to W + diag(v) = 0,

with variable v € R"™. This problem can be solved efficiently, even for relatively
large values of n, such as n = 1000. Its optimal value is a lower bound on the
optimal value of the two-way partitioning problem, and is always at least as good
as the lower bound (5.8) based on Apin (W).

Strong duality and Slater’s constraint qualification

If the equality
d* =p* (5.24)

holds, i.e., the optimal duality gap is zero, then we say that strong duality holds.
This means that the best bound that can be obtained from the Lagrange dual
function is tight.

Strong duality does not, in general, hold. But if the primal problem (5.1) is
convex, i.e., of the form

minimize  fo(z)
subject to  f;(x)

<0, i=1,...,m, (5.25)
Ax =0,

with fo,..., fm convex, we usually (but not always) have strong duality. There are
many results that establish conditions on the problem, beyond convexity, under
which strong duality holds. These conditions are called constraint qualifications.

One simple constraint qualification is Slater’s condition: There exists an = €
relint D such that

filx) <0, i=1,...,m, Az =b. (5.26)

Such a point is sometimes called strictly feasible, since the inequality constraints
hold with strict inequalities. Slater’s theorem states that strong duality holds, if
Slater’s condition holds (and the problem is convex).

Slater’s condition can be refined when some of the inequality constraint func-
tions f; are affine. If the first k& constraint functions fi,..., fr are affine, then
strong duality holds provided the following weaker condition holds: There exists
an x € relint D with

filz) <0, i=1,....k, fi(x)<0, i=k+1,...,m, Az=b. (5.27)
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In other words, the affine inequalities do not need to hold with strict inequal-
ity. Note that the refined Slater condition (5.27) reduces to feasibility when the
constraints are all linear equalities and inequalities, and dom f; is open.

Slater’s condition (and the refinement (5.27)) not only implies strong duality
for convex problems. It also implies that the dual optimal value is attained when
d* > —o0, i.e., there exists a dual feasible (\*,v*) with g(A*,v*) = d* = p*. We
will prove that strong duality obtains, when the primal problem is convex and
Slater’s condition holds, in §5.3.2.

Examples

Least-squares solution of linear equations

Recall the problem (5.5):
minimize 27z
subject to Az =b.

The associated dual problem is
maximize —(1/4)vTAATY — b7y,

which is an unconstrained concave quadratic maximization problem.

Slater’s condition is simply that the primal problem is feasible, so p* = d*
provided b € R(A), i.e., p* < oo. In fact for this problem we always have strong
duality, even when p* = co. This is the case when b ¢ R(A), so there is a z with
ATz =0, b7z # 0. It follows that the dual function is unbounded above along the
line {tz | t € R}, so d* = oo as well.

Lagrange dual of LP

By the weaker form of Slater’s condition, we find that strong duality holds for
any LP (in standard or inequality form) provided the primal problem is feasible.
Applying this result to the duals, we conclude that strong duality holds for LPs
if the dual is feasible. This leaves only one possible situation in which strong
duality for LPs can fail: both the primal and dual problems are infeasible. This
pathological case can, in fact, occur; see exercise 5.23.

Lagrange dual of QCQP
We consider the QCQP

minimize  (1/2)2T Poz + ¢z + 19
: . o . (5.28)
subject to (1/2)a' Pz +q; z+7; <0, i=1,...,m,
with Py € S, and P, € S”, i =1,...,m. The Lagrangian is
L(z,A) = (1/2)a" Pz + g(\) Tz +r(N),
where

PO =PR+Y NP, g =q+Y N, ) =ro+ Y Airi.
i=1 i=1

i=1
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It is possible to derive an expression for g(\) for general A, but it is quite compli-
cated. If A = 0, however, we have P()\) > 0 and

g(\) = inf L(z, A) = =(1/2)g(N)" P(N) " a(A) + ().
We can therefore express the dual problem as

maximize —(1/2)g(\)TP(N\)"Lq(A) +r(N)

subject to A > 0. (5.29)

The Slater condition says that strong duality between (5.29) and (5.28) holds if the
quadratic inequality constraints are strictly feasible, i.e., there exists an x with

(1/2)2T" Pz + ¢fo+r; <0, i=1,...,m.

Entropy maximization
Our next example is the entropy maximization problem (5.13):
minimize Y., x;logx;

subject to Ax <b
17x =1,

with domain D = R!/. The Lagrange dual function was derived on page 222; the

dual problem is

. . —_— — T
maximize —bTA—v—e VTN em® A

subject to A = 0, (5.30)

with variables A € R™, v € R. The (weaker) Slater condition for (5.13) tells us
that the optimal duality gap is zero if there exists an x > 0 with Ax < b and
17z =1.

We can simplify the dual problem (5.30) by maximizing over the dual variable
v analytically. For fixed A, the objective function is maximized when the derivative
with respect to v is zero, i.e.,

n
V= logZe‘“iT’\ -1
i=1

Substituting this optimal value of v into the dual problem gives
maximize —bT\ —log (Z?:l e’“?A>
subject to A > 0,
which is a geometric program (in convex form) with nonnegativity constraints.
Minimum volume covering ellipsoid
We consider the problem (5.14):

minimize  logdet X ~*
subject to al Xa; <1, i=1,...,m,
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with domain D = S’ . The Lagrange dual function is given by (5.15), so the dual
problem can be expressed as

maximize logdet (31" Nja;al ) —1TA+n

subject to A =0 (5.31)

where we take logdet X = —oo if X # 0.

The (weaker) Slater condition for the problem (5.14) is that there exists an
X e 8%, with alXa; < 1, for i = 1,...,m. This is always satisfied, so strong
duality always obtains between (5.14) and the dual problem (5.31).

A nonconvex quadratic problem with strong duality

On rare occasions strong duality obtains for a nonconvex problem. As an important
example, we consider the problem of minimizing a nonconvex quadratic function
over the unit ball,

minimize z7 Az 4+ 2072

subject to zTx <1, (5.32)

where A € S™, A% 0, and b € R". Since A # 0, this is not a convex problem. This
problem is sometimes called the trust region problem, and arises in minimizing a
second-order approximation of a function over the unit ball, which is the region in
which the approximation is assumed to be approximately valid.

The Lagrangian is

Lz, \) = 2T Az + 2072 + NaTa — 1) = 2T (A + M)z + 207z — ),
so the dual function is given by

g(A)z{ “bT(A+ADTb— A A+ M =0, beR(A+ )

—00 otherwise,

where (A + M) is the pseudo-inverse of A + AI. The Lagrange dual problem is
thus
maximize —bT(A+ AN)Th— X

subject to A+ =0, be R(A+ ), (5.33)

with variable A € R. Although it is not obvious from this expression, this is a
convex optimization problem. In fact, it is readily solved since it can be expressed
as

maximize — Y ., (g7 b)?/(Ai + A) — A

subject to A > —Anin(A4),

where \; and ¢; are the eigenvalues and corresponding (orthonormal) eigenvectors
of A, and we interpret (¢7'b)?/0 as 0 if ¢/ b = 0 and as oo otherwise.

Despite the fact that the original problem (5.32) is not convex, we always have
zero optimal duality gap for this problem: The optimal values of (5.32) and (5.33)
are always the same. In fact, a more general result holds: strong duality holds for
any optimization problem with quadratic objective and one quadratic inequality
constraint, provided Slater’s condition holds; see §B.1.



230

5 Duality

5.2.5

Mixed strategies for matrix games

In this section we use strong duality to derive a basic result for zero-sum matrix
games. We consider a game with two players. Player 1 makes a choice (or move)
ke {1,...,n}, and player 2 makes a choice [ € {1,...,m}. Player 1 then makes a
payment of Py to player 2, where P € R™*"™ is the payoff matriz for the game.
The goal of player 1 is to make the payment as small as possible, while the goal of
player 2 is to maximize it.

The players use randomized or mized strategies, which means that each player
makes his or her choice randomly and independently of the other player’s choice,
according to a probability distribution:

prob(k=1i)=w;, i=1,...,n, prob(l=1%)=wv;, i=1,...,m.

Here u and v give the probability distributions of the choices of the two players,
i.e., their associated strategies. The expected payoff from player 1 to player 2 is
then

m
E uklekl = UTP”U.

=1

NE

E
I

1

~

Player 1 wishes to choose u to minimize u” Pv, while player 2 wishes to choose v
to maximize u” Pv.

Let us first analyze the game from the point of view of player 1, assuming her
strategy u is known to player 2 (which clearly gives an advantage to player 2).
Player 2 will choose v to maximize u” Pv, which results in the expected payoff

sup{u’ Pv |v =0, 1To =1} = max (PTw);.
i=1,....m
The best thing player 1 can do is to choose u to minimize this worst-case payoff to
player 2, i.e., to choose a strategy u that solves the problem

minimize  max;—1,_n(PTu);
. B (5.34)
subject to u >0, 1'u=1,
which is a piecewise-linear convex optimization problem. We will denote the opti-
mal value of this problem as pj. This is the smallest expected payoff player 1 can
arrange to have, assuming that player 2 knows the strategy of player 1, and plays
to his own maximum advantage.
In a similar way we can consider the situation in which v, the strategy of
player 2, is known to player 1 (which gives an advantage to player 1). In this case
player 1 chooses u to minimize u” Pv, which results in an expected payoff of

inf{u” Pv|u>=0, 1Tu=1} = vﬁI{liH (Pv);.

)

Player 2 chooses v to maximize this, i.e., chooses a strategy v that solves the
problem
maximize min;—q ., (Pv);

subject to v >0, 1Tv =1, (5.35)
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which is another convex optimization problem, with piecewise-linear (concave) ob-
jective. We will denote the optimal value of this problem as p3. This is the largest
expected payoff player 2 can guarantee getting, assuming that player 1 knows the
strategy of player 2.

It is intuitively obvious that knowing your opponent’s strategy gives an advan-
tage (or at least, cannot hurt), and indeed, it is easily shown that we always have
py > p5. We can interpret the difference, p7 — p3, which is nonnegative, as the
advantage conferred on a player by knowing the opponent’s strategy.

Using duality, we can establish a result that is at first surprising: p7 = p3.
In other words, in a matrix game with mixed strategies, there is no advantage to
knowing your opponent’s strategy. We will establish this result by showing that
the two problems (5.34) and (5.35) are Lagrange dual problems, for which strong
duality obtains.

We start by formulating (5.34) as an LP,

minimize ¢
subject to u >0, 1Tu=1
PTy <t1,

with extra variable ¢t € R. Introducing the multiplier A for PTu < 1, p for u = 0,
and v for 17y = 1, the Lagrangian is

t+ AT (PTu—11) — pTu+v(1 —1Tu) = v+ (1 = 17Nt + (PA —v1 — p)Tu,
so the dual function is

v 1"A=1, Px—vl=yp
—oo  otherwise.

g\ p,v) = {

The dual problem is then

maximize v
subject to A >0, 17\ =1, w>=0
P\ —vl=p.

Eliminating p we obtain the following Lagrange dual of (5.34):

maximize v
subject to A >0, 17A=1
PA =11,

with variables A\, v. But this is clearly equivalent to (5.35). Since the LPs are
feasible, we have strong duality; the optimal values of (5.34) and (5.35) are equal.
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Geometric interpretation

Weak and strong duality via set of values

We can give a simple geometric interpretation of the dual function in terms of the
set

G={(fi(z),..., fm(x), h1(x), ..., hp(x), fo(z)) e R x R x R | z € D}, (5.36)

which is the set of values taken on by the constraint and objective functions. The
optimal value p* of (5.1) is easily expressed in terms of G as

p* =inf{t | (u,v,t) € G, u =<0, v=0}.

To evaluate the dual function at (A, v), we minimize the affine function
m P
()‘a v, 1)T(u7 v, t) = Z Ajug + Z viv; +t
i=1 i=1

over (u,v,t) € G, i.e., we have
g\, v) = inf{(\, v, )T (u,v,t) | (u,v,t) € G}.
In particular, we see that if the infimum is finite, then the inequality
v, D) (u,0,t) > g\ v)

defines a supporting hyperplane to G. This is sometimes referred to as a nonvertical
supporting hyperplane, because the last component of the normal vector is nonzero.

Now suppose A = 0. Then, obviously, t > (A, v, )T (u,v,t) if u < 0 and v = 0.
Therefore

S
I

* inf{t | (u,v,t) € G, u =<0, v=0}

inf{(\, v, )" (u,v,) | (u,v,t) €G, u =0, v=0}
inf{(\, v, )" (u,v,t) | (u,v,t) € G}

g(Av),

i.e., we have weak duality. This interpretation is illustrated in figures 5.3 and 5.4,
for a simple problem with one inequality constraint.

AR\,

Epigraph variation

In this section we describe a variation on the geometric interpretation of duality in
terms of G, which explains why strong duality obtains for (most) convex problems.
We define the set A CR"™ x R” x R as

A=G+ (R} x {0} xRy), (5.37)
or, more explicitly,

A={(u,v,t) |z €D, fi(z)<wu;, i=1,...,m,
hz(x) = Vi, 1= 1aap7 fo(l') St}v
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Figure 5.3 Geometric interpretation of dual function and lower bound g(\) <
p*, for a problem with one (inequality) constraint. Given A, we minimize

A DT (u,t) over G = {(fi(z), fo(x)) | * € D}. This yields a supporting
hyperplane with slope —A. The intersection of this hyperplane with the

u = 0 axis gives g(\).

Aou+t=g(A2) G
Nu+t=g(\*) -

)\1’U,+t:g<)\1) d

Figure 5.4 Supporting hyperplanes corresponding to three dual feasible val-
ues of ), including the optimum A*. Strong duality does not hold; the

optimal duality gap p* — d* is positive.
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(0,p")

A+t = g()\)\

(0,9(N))

Figure 5.5 Geometric interpretation of dual function and lower bound g(\) <
p*, for a problem with one (inequality) constraint. Given ), we minimize
A DT (u,t) over A = {(u,t) | Iz € D, fo(x) <t, fi(z) < u}. This yields
a supporting hyperplane with slope —\. The intersection of this hyperplane
with the u = 0 axis gives g(\).

We can think of A as a sort of epigraph form of G, since A includes all the points in
G, as well as points that are ‘worse’, i.e., those with larger objective or inequality
constraint function values.

We can express the optimal value in terms of A as

p* =inf{t | (0,0,t) € A}.

To evaluate the dual function at a point (A, v) with A > 0, we can minimize the
affine function (\,v,1)T (u,v,t) over A: If X\ = 0, then

g\ v) = inf{(\, v, )T (u,v,t) | (u,v,t) € A}.
If the infimum is finite, then
A v, )T (w,0,1) 2 g(A,v)

defines a nonvertical supporting hyperplane to A.
In particular, since (0,0, p*) € bd A, we have

p* = ()‘7 v, 1)T(0’0>p*) > g()‘a V)v (538)

the weak duality lower bound. Strong duality holds if and only if we have equality
in (5.38) for some dual feasible (A,v), i.e., there exists a nonvertical supporting
hyperplane to A at its boundary point (0, 0, p*).

This second interpretation is illustrated in figure 5.5.

Proof of strong duality under constraint qualification

In this section we prove that Slater’s constraint qualification guarantees strong
duality (and that the dual optimum is attained) for a convex problem. We consider
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the primal problem (5.25), with fo,..., f,, convex, and assume Slater’s condition
holds: There exists Z € relintD with f;(Z) < 0, i =1,...,m, and AZ = b. In
order to simplify the proof, we make two additional assumptions: first that D has
nonempty interior (hence, relint D = int D) and second, that rank A = p. We
assume that p* is finite. (Since there is a feasible point, we can only have p* = —co
or p* finite; if p* = —oo, then d* = —co by weak duality.)

The set A defined in (5.37) is readily shown to be convex if the underlying
problem is convex. We define a second convex set B as

B={(0,0,s) e R" xR xR | s < p*}.

The sets A and B do not intersect. To see this, suppose (u,v,t) € AN B. Since
(u,v,t) € B we have u =0, v =0, and ¢ < p*. Since (u,v,t) € A, there exists an x
with fi(z) <0,7:=1,...,m, Az —b =0, and fo(z) <t < p*, which is impossible
since p* is the optimal value of the primal problem.
By the separating hyperplane theorem of §2.5.1 there exists (~, U,p) # 0 and «
such that
(u,v,t) e A = MNou+oTv+ pt > a, (5.39)

and )
(u,v,t) € B = Nu+ "o+ put <o (5.40)

From (5.39) we conclude that A = 0and g > 0. (Otherwise Ny + ut is unbounded
below over A, contradicting (5.39).) The condition (5.40) simply means that ut < «
for all ¢ < p*, and hence, up* < a. Together with (5.39) we conclude that for any
zeD,

S Afilw) + 57 (Ax — b) + pfola) > > up*. (5.41)
i=1
Assume that g > 0. In that case we can divide (5.41) by u to obtain

L(z, N p,v/p) > p*

for all € D, from which it follows, by minimizing over z, that g(A,v) > p*, where
we define

A=Mu,  v="0/p

By weak duality we have g(\,v) < p*, so in fact g(\,v) = p*. This shows that
strong duality holds, and that the dual optimum is attained, at least in the case
when p > 0.

Now consider the case p = 0. From (5.41), we conclude that for all x € D,

m
i=1

Applying this to the point Z that satisfies the Slater condition, we have

>

fi(x) + 0T (Az —b) > 0. (5.42)

Z Xifi(#) > 0.
=1
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Figure 5.6 Illustration of strong duality proof, for a convex problem that sat-
isfies Slater’s constraint qualification. The set A is shown shaded, and the
set B is the thick vertical line segment, not including the point (0, p*), shown
as a small open circle. The two sets are convex and do not intersect, so they
can be separated by a hyperplane. Slater’s constraint qualification guaran-
tees that any separating hyperplane must be nonvertical, since it must pass

to the left of the point (a,t) = (f1(Z), fo(Z)), where Z is strictly feasible.

Since f;(#) < 0 and A; > 0, we conclude that A = 0. From (\,7,p) # 0 and
A =0, p =0, we conclude that 7 # 0. Then (5.42) implies that for all z € D,
7T (Az — b) > 0. But 7 satisfies 77 (A% — b) = 0, and since Z € int D, there are
points in D with 77 (Az — b) < 0 unless AT = 0. This, of course, contradicts our
assumption that rank A = p.

The geometric idea behind the proof is illustrated in figure 5.6, for a simple
problem with one inequality constraint. The hyperplane separating A and B defines
a supporting hyperplane to A at (0,p*). Slater’s constraint qualification is used
to establish that the hyperplane must be nonvertical (i.e., has a normal vector of
the form (A*,1)). (For a simple example of a convex problem with one inequality
constraint for which strong duality fails, see exercise 5.21.)

Multicriterion interpretation

There is a natural connection between Lagrange duality for a problem without
equality constraints,

minimize  fo(x)

subject to  fi(x) <0, i=1,...,m, (5.43)
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and the scalarization method for the (unconstrained) multicriterion problem
minimize (w.r.t. R7™)  F(z) = (f1(2),- .., fm(2), fo(z)) (5.44)

(see §4.7.4). In scalarization, we choose a positive vector A, and minimize the scalar
function AT F(zx); any minimizer is guaranteed to be Pareto optimal. Since we can
scale \ by a positive constant, without affecting the minimizers, we can, without
loss of generality, take A= (M, 1). Thus, in scalarization we minimize the function

A () = folz) + Z i),

which is exactly the Lagrangian for the problem (5.43).

To establish that every Pareto optimal point of a convex multicriterion problem
minimizes the function AT F (z) for some nonnegative weight vector A, we considered
the set A, defined in (4.62),

A={teR™ | JxeD, filx)<t;, i=0,...,m},

which is exactly the same as the set A defined in (5.37), that arises in Lagrange dual-
ity. Here too we constructed the required weight vector as a supporting hyperplane
to the set, at an arbitrary Pareto optimal point. In multicriterion optimization,
we interpret the components of the weight vector as giving the relative weights
between the objective functions. When we fix the last component of the weight
vector (associated with fp) to be one, the other weights have the interpretation of
the cost relative to fy, i.e., the cost relative to the objective.

Saddle-point interpretation

In this section we give several interpretations of Lagrange duality. The material of
this section will not be used in the sequel.

Max-min characterization of weak and strong duality

It is possible to express the primal and the dual optimization problems in a form
that is more symmetric. To simplify the discussion we assume there are no equality
constraints; the results are easily extended to cover them.

First note that

A=0 A=0

sup L(xz,\) = sup (fo(x) + Z)‘lfi(m)>
i=1
{fo(ﬂ?) file) <0, i=1,...,m

%) otherwise.



238

5 Duality

5.4.2

Indeed, suppose x is not feasible, and f;(«) > 0 for some 4. Then supy.q L(z,A) =
00, as can be seen by choosing A\; = 0, j # 4, and \; — oo. On the other
hand, if f;(z) < 0, ¢ = 1,...,m, then the optimal choice of A is A = 0 and
supywo L(z, A) = fo(x). This means that we can express the optimal value of the
primal problem as
p* = inf sup L(z, \).
z A0

By the definition of the dual function, we also have

d* = sup inf L(z, \).
A0 =

Thus, weak duality can be expressed as the inequality

sup inf L(z,\) < inf sup L(x, A), (5.45)
AZO0 @ z A=0

and strong duality as the equality

sup inf L(xz,\) = inf sup L(z, ).
AF0 @ T A=0

Strong duality means that the order of the minimization over z and the maximiza-
tion over A = 0 can be switched without affecting the result.
In fact, the inequality (5.45) does not depend on any properties of L: We have

sup inf f(w,z) < inf sup f(w,z) (5.46)
z€Z weWw weW zeZ

forany f : R"xR™ — R (and any W C R" and Z C R™). This general inequality
is called the max-min inequality. When equality holds, i.e.,

sup inf f(w,z)= inf sup f(w,2) (5.47)
2€Z weW weW zeZ

we say that f (and W and Z) satisfy the strong maz-min property or the saddle-
point property. Of course the strong max-min property holds only in special cases,
for example, when f : R" x R™ — R is the Lagrangian of a problem for which
strong duality obtains, W = R", and Z = R".

Saddle-point interpretation

We refer to a pair w € W, Z € Z as a saddle-point for f (and W and Z) if

flw,z) < f(w,2) < f(w, 2)

for all w € W and z € Z. In other words, @ minimizes f(w,Z2) (over w € W) and
Z maximizes f(w, z) (over z € Z):

fl,2) = inf f(w,?2), fw,2) = sup f(w,z).
weW zZ€Z
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This implies that the strong max-min property (5.47) holds, and that the common
value is f(w, 2).

Returning to our discussion of Lagrange duality, we see that if z* and \* are
primal and dual optimal points for a problem in which strong duality obtains, they
form a saddle-point for the Lagrangian. The converse is also true: If (x,\) is a
saddle-point of the Lagrangian, then x is primal optimal, A is dual optimal, and
the optimal duality gap is zero.

Game interpretation

We can interpret the max-min inequality (5.46), the max-min equality (5.47), and
the saddle-point property, in terms of a continuous zero-sum game. If the first
player chooses w € W, and the second player selects z € Z, then player 1 pays an
amount f(w, z) to player 2. Player 1 therefore wants to minimize f, while player 2
wants to maximize f. (The game is called continuous since the choices are vectors,
and not discrete.)

Suppose that player 1 makes his choice first, and then player 2, after learning
the choice of player 1, makes her selection. Player 2 wants to maximize the payoff
f(w, z), and so will choose z € Z to maximize f(w,z). The resulting payoff will
be sup, ¢ f(w, z), which depends on w, the choice of the first player. (We assume
here that the supremum is achieved; if not the optimal payoff can be arbitrarily
close to sup,c, f(w, z).) Player 1 knows (or assumes) that player 2 will follow this
strategy, and so will choose w € W to make this worst-case payoff to player 2 as
small as possible. Thus player 1 chooses

argmin sup f(w, z),
weW zeZ

which results in the payoff
inf sup f(w,z)
weW zeZ

from player 1 to player 2.

Now suppose the order of play is reversed: Player 2 must choose z € Z first, and
then player 1 chooses w € W (with knowledge of z). Following a similar argument,
if the players follow the optimal strategy, player 2 should choose z € Z to maximize
inf,ew f(w,z), which results in the payoff of

sup inf f(w,z)
2€Z weW

from player 1 to player 2.

The max-min inequality (5.46) states the (intuitively obvious) fact that it is
better for a player to go second, or more precisely, for a player to know his or her
opponent’s choice before choosing. In other words, the payoff to player 2 will be
larger if player 1 must choose first. When the saddle-point property (5.47) holds,
there is no advantage to playing second.

If (w,2) is a saddle-point for f (and W and Z), then it is called a solution of
the game; w is called the optimal choice or strategy for player 1, and Z is called
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the optimal choice or strategy for player 2. In this case there is no advantage to
playing second.

Now comnsider the special case where the payoff function is the Lagrangian,
W =R" and Z = R". Here player 1 chooses the primal variable x, while player 2
chooses the dual variable A > 0. By the argument above, the optimal choice for
player 2, if she must choose first, is any A\* which is dual optimal, which results
in a payoff to player 2 of d*. Conversely, if player 1 must choose first, his optimal
choice is any primal optimal z*, which results in a payoff of p*.

The optimal duality gap for the problem is exactly equal to the advantage
afforded the player who goes second, i.e., the player who has the advantage of
knowing his or her opponent’s choice before choosing. If strong duality holds, then
there is no advantage to the players of knowing their opponent’s choice.

Price or tax interpretation

Lagrange duality has an interesting economic interpretation. Suppose the variable
x denotes how an enterprise operates and fy(x) denotes the cost of operating at
x, i.e., —fo(x) is the profit (say, in dollars) made at the operating condition .
Each constraint f;(x) < 0 represents some limit, such as a limit on resources (e.g.,
warehouse space, labor) or a regulatory limit (e.g., environmental). The operating
condition that maximizes profit while respecting the limits can be found by solving
the problem

minimize  fo(z)

subject to  fi(z) <0, i=1

ey

The resulting optimal profit is —p*.

Now imagine a second scenario in which the limits can be violated, by paying an
additional cost which is linear in the amount of violation, measured by f;. Thus the
payment made by the enterprise for the ¢th limit or constraint is A; f;(z). Payments
are also made to the firm for constraints that are not tight; if f;(z) < 0, then \; f;(z)
represents a payment to the firm. The coefficient \; has the interpretation of the
price for violating f;(x) < 0; its units are dollars per unit violation (as measured
by f;). For the same price the enterprise can sell any ‘unused’ portion of the ith
constraint. We assume \; > 0, i.e., the firm must pay for violations (and receives
income if a constraint is not tight).

As an example, suppose the first constraint in the original problem, fi(z) <
0, represents a limit on warehouse space (say, in square meters). In this new
arrangement, we open the possibility that the firm can rent extra warehouse space
at a cost of Ay dollars per square meter and also rent out unused space, at the same
rate.

The total cost to the firm, for operating condition x, and constraint prices
Ni, is L(z, A) = fo(x) + >, Aifi(z). The firm will obviously operate so as to
minimize its total cost L(x, ), which yields a cost g(A). The dual function therefore
represents the optimal cost to the firm, as a function of the constraint price vector
A. The optimal dual value, d*, is the optimal cost to the enterprise under the least
favorable set of prices.
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Using this interpretation we can paraphrase weak duality as follows: The opti-
mal cost to the firm in the second scenario (in which constraint violations can be
bought and sold) is less than or equal to the cost in the original situation (which
has constraints that cannot be violated), even with the most unfavorable prices.
This is obvious: If z* is optimal in the first scenario, then the operating cost of z*
in the second scenario will be lower than fy(z*), since some income can be derived
from the constraints that are not tight. The optimal duality gap is then the min-
imum possible advantage to the enterprise of being allowed to pay for constraint
violations (and receive payments for nontight constraints).

Now suppose strong duality holds, and the dual optimum is attained. We can
interpret a dual optimal A\* as a set of prices for which there is no advantage to
the firm in being allowed to pay for constraint violations (or receive payments for
nontight constraints). For this reason a dual optimal A\* is sometimes called a set
of shadow prices for the original problem.

Optimality conditions

We remind the reader that we do not assume the problem (5.1) is convex, unless
explicitly stated.

Certificate of suboptimality and stopping criteria

If we can find a dual feasible (A, v), we establish a lower bound on the optimal value
of the primal problem: p* > g(A,v). Thus a dual feasible point (A, v) provides a
proof or certificate that p* > g(\,v). Strong duality means there exist arbitrarily
good certificates.

Dual feasible points allow us to bound how suboptimal a given feasible point
is, without knowing the exact value of p*. Indeed, if x is primal feasible and (A, v)
is dual feasible, then

fo(x) —p* < fo(z) — g(A,v).

In particular, this establishes that z is e-suboptimal, with € = fo(z) — g(A,v). (It
also establishes that (A, v) is e-suboptimal for the dual problem.)

We refer to the gap between primal and dual objectives,

fO(x) - g()\,l/),

as the duality gap associated with the primal feasible point x and dual feasible
point (A, 7). A primal dual feasible pair x, (), v) localizes the optimal value of the
primal (and dual) problems to an interval:

prelgnv), fol@)l,  d* €lg(Av), fo(x)],

the width of which is the duality gap.
If the duality gap of the primal dual feasible pair x, (A, v) is zero, i.e., fo(z) =
g(\,v), then z is primal optimal and (A, v) is dual optimal. We can think of (A, v
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as a certificate that proves z is optimal (and, similarly, we can think of z as a
certificate that proves (A, v) is dual optimal).

These observations can be used in optimization algorithms to provide nonheuris-
tic stopping criteria. Suppose an algorithm produces a sequence of primal feasible
2 and dual feasible ()\(k), V(k)), for k=1,2,..., and €, > 0 is a given required
absolute accuracy. Then the stopping criterion (i.e., the condition for terminating
the algorithm)

fO(x(k)) - g<)\(k)7 V(k)) S €abs

guarantees that when the algorithm terminates, z(®) is e,ps-suboptimal. Indeed,
(AR p(k)) is a certificate that proves it. (Of course strong duality must hold if
this method is to work for arbitrarily small tolerances €,ps.)

A similar condition can be used to guarantee a given relative accuracy €, > 0.
If
fo(a®) — oA, b))

(k) (k)
g(A v ) >07 g()\(k)’y(k)) Serel
holds, or
k) — g(AR) )
) Jo(z™) —g(A'"™,v))
fO(‘r ) < 07 7f0(()'](k)) é €rel

holds, then p* # 0 and the relative error

fo(z®)) — p*
Ip*|

is guaranteed to be less than or equal to €.

Complementary slackness
Suppose that the primal and dual optimal values are attained and equal (so, in

particular, strong duality holds). Let z* be a primal optimal and (A*, v*) be a dual
optimal point. This means that

fola™) =g\ v7)
= inf (fo(x) + Z A; fiz) + Z V:hz(x)>
i=1 i=1

m p

fo(@*) + D N fila®) + ) vihi(a)
=1 =1

fo(x*).

IN

IN

The first line states that the optimal duality gap is zero, and the second line is
the definition of the dual function. The third line follows since the infimum of the
Lagrangian over x is less than or equal to its value at x = x*. The last inequality
follows from Af > 0, fi(z*) <0,¢=1,...,m, and h;(z*) =0,i=1,...,p. We
conclude that the two inequalities in this chain hold with equality.
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We can draw several interesting conclusions from this. For example, since the
inequality in the third line is an equality, we conclude that * minimizes L(x, \*, v*)
over z. (The Lagrangian L(z, A*,v*) can have other minimizers; z* is simply a
minimizer.)

Another important conclusion is that

> X fi(a*) = 0.
=1

Since each term in this sum is nonpositive, we conclude that
AN filz®)=0, i=1,...,m. (5.48)

This condition is known as complementary slackness; it holds for any primal opti-
mal 2* and any dual optimal (A*,v*) (when strong duality holds). We can express
the complementary slackness condition as

AF >0 = fi(z*) =0,
or, equivalently,
filz®) <0 = A7 =0.

Roughly speaking, this means the ith optimal Lagrange multiplier is zero unless
the ith constraint is active at the optimum.

KKT optimality conditions

We now assume that the functions fo,..., fm,h1,...,hy are differentiable (and
therefore have open domains), but we make no assumptions yet about convexity.

KKT conditions for nonconvex problems

As above, let x* and (A*,v*) be any primal and dual optimal points with zero
duality gap. Since z* minimizes L(z, A\*,v*) over z, it follows that its gradient
must vanish at z*, i.e.,

Vi) + Y NVfi(a*)+ > v Vhi(z*) = 0.
=1

i=1

Thus we have

filz*) < 0, i=1,....m

hi(z*) = 0, i=1,...,p
A >0, i=1, ,m (5.49)

Affila*) = 0, i=1,...,m

Il
o

)
Vfo(a*) + 22 NV fila®) + 320 v Vhi(27)

which are called the Karush-Kuhn-Tucker (KKT) conditions.

To summarize, for any optimization problem with differentiable objective and
constraint functions for which strong duality obtains, any pair of primal and dual
optimal points must satisfy the KKT conditions (5.49).

)
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KKT conditions for convex problems

When the primal problem is convex, the KKT conditions are also sufficient for the
points to be primal and dual optimal. In other words, if f; are convex and h; are
affine, and Z, A, U are any points that satisfy the KKT conditions

fi@ < 0, i=1,....m
hi(@) = 0, i=1,...,p
N > 0, i=1,...,m
S\Zfz(JNC) = 0, 1 1, ,m
Vfo(®) + S MV Fi(E) + S0 7 Vhi(E) = 0,

then z and (5\, 7) are primal and dual optimal, with zero duality gap.
To see this, note that the first two conditions state that # is primal feasible.
Since \; > 0, L(x,\,7) is convex in z; the last KKT condition states that its

gradient with respect to « vanishes at © = &, so it follows that & minimizes L(x, \, 7)
over z. From this we conclude that

g\ ) = L(Z,\D)
= fo(i)+zj\ifi(i)+zl7ihi(f)
i=1 i=1
= fO(j)7

where in the last line we use h;(Z) = 0 and S\Zfl(i:) = 0. This shows that Z
and (A, 7) have zero duality gap, and therefore are primal and dual optimal. In
summary, for any convex optimization problem with differentiable objective and
constraint functions, any points that satisfy the KKT conditions are primal and
dual optimal, and have zero duality gap.

If a convex optimization problem with differentiable objective and constraint
functions satisfies Slater’s condition, then the KKT conditions provide necessary
and sufficient conditions for optimality: Slater’s condition implies that the optimal
duality gap is zero and the dual optimum is attained, so z is optimal if and only if
there are (A, v) that, together with z, satisfy the KKT conditions.

The KKT conditions play an important role in optimization. In a few special
cases it is possible to solve the KKT conditions (and therefore, the optimization
problem) analytically. More generally, many algorithms for convex optimization are
conceived as, or can be interpreted as, methods for solving the KKT conditions.

Example 5.1 FEquality constrained convexr quadratic minimization. We consider the
problem
minimize  (1/2)z” Pz + ¢z +r
subject to Az = b,
where P € S}. The KKT conditions for this problem are

(5.50)

Az* = b, Pz +q+ ATV =0,

which we can write as
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Solving this set of m + n equations in the m + n variables x*, v* gives the optimal
primal and dual variables for (5.50).

Example 5.2 Water-filling. We consider the convex optimization problem

minimize —Y " log(ai + ;)
subject to x>0, 1Tz =1,

where «; > 0. This problem arises in information theory, in allocating power to a
set of n communication channels. The variable x; represents the transmitter power
allocated to the ith channel, and log(a; + x;) gives the capacity or communication
rate of the channel, so the problem is to allocate a total power of one to the channels,
in order to maximize the total communication rate.

Introducing Lagrange multipliers A\* € R™ for the inequality constraints z* > 0,
and a multiplier v* € R for the equality constraint 17z = 1, we obtain the KKT
conditions

z* =0, 172 =1, A =0, ANar=0, i=1,...,n,

—1/(ai+z}) =X +v" =0, i=1,...,n.

We can directly solve these equations to find z*, \*, and v*. We start by noting that
A" acts as a slack variable in the last equation, so it can be eliminated, leaving

x* =0, 172" =1, zy (v —1/(is + 7)) =0, i=1,...,n,

v > 1/(a; + i), i=1,...,n.

If v* < 1/ay, this last condition can only hold if xf > 0, which by the third condition
implies that v* = 1/(a; + x}). Solving for z}, we conclude that z; = 1/v* — a;
if v° < 1/ay. If v* > 1/ay, then z7 > 0 is impossible, because it would imply
v > 1/a; > 1/(as + x7), which violates the complementary slackness condition.
Therefore, 7 = 0 if v* > 1/a;. Thus we have

o /v —a; v <1/ay
710 v > 1/,

or, put more simply, z; = max{0,1/v* — a;}. Substituting this expression for z;

into the condition 172* = 1 we obtain

Zmax{o, /v —a;}=1.

i=1

The lefthand side is a piecewise-linear increasing function of 1/v*, with breakpoints
at oy, so the equation has a unique solution which is readily determined.

This solution method is called water-filling for the following reason. We think of
a; as the ground level above patch i, and then flood the region with water to a
depth 1/v, as illustrated in figure 5.7. The total amount of water used is then
>, max{0,1/v* — a;}. We then increase the flood level until we have used a total
amount of water equal to one. The depth of water above patch i is then the optimal
value z7}.
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1/v*

e

T

Qy

7
Figure 5.7 Illustration of water-filling algorithm. The height of each patch is
given by a;. The region is flooded to a level 1/v* which uses a total quantity

of water equal to one. The height of the water (shown shaded) above each
patch is the optimal value of x}.

MMV

x1

L2

Figure 5.8 Two blocks connected by springs to each other, and the left and
right walls. The blocks have width w > 0, and cannot penetrate each other
or the walls.

Mechanics interpretation of KKT conditions

The KKT conditions can be given a nice interpretation in mechanics (which indeed,
was one of Lagrange’s primary motivations). We illustrate the idea with a simple
example. The system shown in figure 5.8 consists of two blocks attached to each
other, and to walls at the left and right, by three springs. The position of the
blocks are given by 2 € R?, where 2 is the displacement of the (middle of the) left
block, and x5 is the displacement of the right block. The left wall is at position 0,
and the right wall is at position I.

The potential energy in the springs, as a function of the block positions, is given
by

1 1 1
fo(l‘l,xg) = 5]61&6% + 5]@2(1‘2 — 1‘1)2 + 5]@3([ — $2)2,

where k; > 0 are the stiffness constants of the three springs. The equilibrium
position x* is the position that minimizes the potential energy subject to the in-
equalities

w/2—1x1 <0, w+ 1 — 29 <0, w/2—1+x9 <0. (5.51)
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A — — Ao Ay — — A3
k1zq ~—— = ko(zo —x1)  ko(zo — 1) —— — k3(l — x2)

Figure 5.9 Force analysis of the block-spring system. The total force on
each block, due to the springs and also to contact forces, must be zero. The
Lagrange multipliers, shown on top, are the contact forces between the walls
and blocks. The spring forces are shown at bottom.

These constraints are called kinematic constraints, and express the fact that the
blocks have width w > 0, and cannot penetrate each other or the walls. The
equilibrium position is therefore given by the solution of the optimization problem

minimize (1/2) (k’ll‘% + kg(.ﬁEQ — £E1)2 + /{53(1 - .172)2)
subject to w/2—xz; <0

w+x—29 <0

w/2—1+x9 <0,

(5.52)

which is a QP.

With A1, A2, A3 as Lagrange multipliers, the KKT conditions for this problem
consist of the kinematic constraints (5.51), the nonnegativity constraints A\; > 0,
the complementary slackness conditions

M(w/2 —x1) =0, Ao(w —x9 + 1) =0, As(w/2 —1+x9) =0, (5.53)

and the zero gradient condition

kQ(];lzxi;ll€)2£zz3_(lail)ﬂEQ) } Y { —01 } + A2 [ fl } + A3 [ (1) ] =0. (5.54)

The equation (5.54) can be interpreted as the force balance equations for the two
blocks, provided we interpret the Lagrange multipliers as contact forces that act
between the walls and blocks, as illustrated in figure 5.9. The first equation states
that the sum of the forces on the first block is zero: The term —kqx is the force
exerted on the left block by the left spring, the term ko (xo — 1) is the force exerted
by the middle spring, A\ is the force exerted by the left wall, and —\5 is the force
exerted by the right block. The contact forces must point away from the contact
surface (as expressed by the constraints A; > 0 and —Xs < 0), and are nonzero
only when there is contact (as expressed by the first two complementary slackness
conditions (5.53)). In a similar way, the second equation in (5.54) is the force
balance for the second block, and the last condition in (5.53) states that Az is zero
unless the right block touches the wall.

In this example, the potential energy and kinematic constraint functions are
convex, and (the refined form of) Slater’s constraint qualification holds provided
2w < I, i.e., there is enough room between the walls to fit the two blocks, so we
can conclude that the energy formulation of the equilibrium given by (5.52), gives
the same result as the force balance formulation, given by the KKT conditions.
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Solving the primal problem via the dual

We mentioned at the beginning of §5.5.3 that if strong duality holds and a dual
optimal solution (A*,r*) exists, then any primal optimal point is also a minimizer
of L(xz, \*,v*). This fact sometimes allows us to compute a primal optimal solution
from a dual optimal solution.

More precisely, suppose we have strong duality and an optimal (\*, v*) is known.
Suppose that the minimizer of L(x, \*,v*), i.e., the solution of

minimize fo(z) + Yoie, N fi(x) + 30 vihi(x), (5.55)

is unique. (For a convex problem this occurs, for example, if L(x, \*, v*) is a strictly
convex function of z.) Then if the solution of (5.55) is primal feasible, it must be
primal optimal; if it is not primal feasible, then no primal optimal point can exist,
i.e., we can conclude that the primal optimum is not attained. This observation is
interesting when the dual problem is easier to solve than the primal problem, for
example, because it can be solved analytically, or has some special structure that
can be exploited.

Example 5.3 Entropy mazimization. We consider the entropy maximization problem
minimize  fo(z) = Z?:l xilogx;
subject to Ax <Xb
1"z =1

with domain R’ |, and its dual problem

T
maximize —bTA—v—e v} 2:21 e~ % A
subject to A >0

where a; are the columns of A (see pages 222 and 228). We assume that the weak
form of Slater’s condition holds, i.e., there exists an > 0 with Az < band 1Tz =1,
so strong duality holds and an optimal solution (A\*,v*) exists.

Suppose we have solved the dual problem. The Lagrangian at (A*,v*) is
Lz, \*,v*) = le logzi + N (Az —b) +v* (172 — 1)
=1

which is strictly convex on D and bounded below, so it has a unique solution x*,
given by

zf =1/expla; \* + v +1), i=1,...,n.
If z* is primal feasible, it must be the optimal solution of the primal problem (5.13).
If 2* is not primal feasible, then we can conclude that the primal optimum is not
attained.

Example 5.4 Minimizing a separable function subject to an equality constraint. We
consider the problem

minimize  fo(z) = Z?:l Ji(w:)

subject to aTx =b,
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where a € R", b € R, and f; : R — R are differentiable and strictly convex. The
objective function is called separable since it is a sum of functions of the individual
variables x1,...,x,. We assume that the domain of f; intersects the constraint set,
i.e., there exists a point zop € dom fo with Tz = b. This implies the problem has
a unique optimal point z*.

The Lagrangian is

L(z,v) = Z fi(zi) +v(a"z —b) = —bv + Z(fz(xz) + vaiz;),

=1

which is also separable, so the dual function is

gv) = —bv+inf (Z(fi(aci)—ﬁ—uami))

=1

= —bv+ Z inf(fi(xs) + va:z;)

i=1
= —bv— Zfi*(—yai).
i=1

The dual problem is thus
maximize —bv—Y " | fi(—vai),

with (scalar) variable v € R.

Now suppose we have found an optimal dual variable v*. (There are several simple
methods for solving a convex problem with one scalar variable, such as the bisection
method.) Since each f; is strictly convex, the function L(z,v*) is strictly convex in
z, and so has a unique minimizer . But we also know that z* minimizes L(z,v"),
so we must have & = z*. We can recover z* from V,L(z,v*) = 0, i.e., by solving the
equations f(z}) = —v*a;.

Perturbation and sensitivity analysis
When strong duality obtains, the optimal dual variables give very useful informa-

tion about the sensitivity of the optimal value with respect to perturbations of the
constraints.

The perturbed problem

We consider the following perturbed version of the original optimization prob-

lem (5.1):
minimize  fo(x)
subject to  fi(z) <w;, i=1,...,m (5.56)
hi(x):vi, iZl,...,p,
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with variable x € R"™. This problem coincides with the original problem (5.1) when
u =0, v =0. When u; is positive it means that we have relaxed the ith inequality
constraint; when wu; is negative, it means that we have tightened the constraint.
Thus the perturbed problem (5.56) results from the original problem (5.1) by tight-
ening or relaxing each inequality constraint by u;, and changing the righthand side
of the equality constraints by v;.

We define p*(u,v) as the optimal value of the perturbed problem (5.56):

p*(u,v) = lnf{fo(l') | dr € Da f7(l’) S Uq s 1= 15"'am7
hi(x)=v;, i=1,...,p}.

We can have p*(u,v) = oo, which corresponds to perturbations of the constraints
that result in infeasibility. Note that p*(0,0) = p*, the optimal value of the un-
perturbed problem (5.1). (We hope this slight abuse of notation will cause no
confusion.) Roughly speaking, the function p* : R™ x R? — R gives the optimal
value of the problem as a function of perturbations to the righthand sides of the
constraints.

When the original problem is convex, the function p* is a convex function of u
and v; indeed, its epigraph is precisely the closure of the set A defined in (5.37)
(see exercise 5.32).

A global inequality

Now we assume that strong duality holds, and that the dual optimum is attained.
(This is the case if the original problem is convex, and Slater’s condition is satisfied).
Let (A\*,v*) be optimal for the dual (5.16) of the unperturbed problem. Then for
all v and v we have

p*(u,v) > p*(0,0) — Ny — Ty, (5.57)

To establish this inequality, suppose that x is any feasible point for the per-
turbed problem, i.e., fi(z) < w; for i = 1,...,m, and h;(x) =v; fori=1,...,p.
Then we have, by strong duality,

F0,0) = g0 1" < fole)+ SONA) + 3 vihi(a)
i=1 i=1
< folz)+ M4 T,

(The first inequality follows from the definition of g(A*,2*); the second follows
since A* = 0.) We conclude that for any x feasible for the perturbed problem, we
have

folz) > p*(0,0) = X Tu— "o,
from which (5.57) follows.

Sensitivity interpretations

When strong duality holds, various sensitivity interpretations of the optimal La-
grange variables follow directly from the inequality (5.57). Some of the conclusions
are:
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p*(0) = Nu
Figure 5.10 Optimal value p*(u) of a convex problem with one constraint
f1(z) < u, as a function of u. For v = 0, we have the original unperturbed
problem; for u < 0 the constraint is tightened, and for u > 0 the constraint
is loosened. The affine function p*(0) — A*u is a lower bound on p*.

o If \¥ is large and we tighten the ith constraint (i.e., choose u; < 0), then the
optimal value p*(u,v) is guaranteed to increase greatly.

o If v} is large and positive and we take v; < 0, or if v* is large and negative
and we take v; > 0, then the optimal value p*(u,v) is guaranteed to increase
greatly.

e If \f is small, and we loosen the ith constraint (u; > 0), then the optimal
value p*(u,v) will not decrease too much.

o If v} is small and positive, and v; > 0, or if v} is small and negative and
v; < 0, then the optimal value p*(u, v) will not decrease too much.

The inequality (5.57), and the conclusions listed above, give a lower bound on
the perturbed optimal value, but no upper bound. For this reason the results are
not symmetric with respect to loosening or tightening a constraint. For example,
suppose that Af is large, and we loosen the ith constraint a bit (i.e., take u; small
and positive). In this case the inequality (5.57) is not useful; it does not, for
example, imply that the optimal value will decrease considerably.

The inequality (5.57) is illustrated in figure 5.10 for a convex problem with one
inequality constraint. The inequality states that the affine function p*(0) — A*u is
a lower bound on the convex function p*.

Local sensitivity analysis

Suppose now that p*(u,v) is differentiable at u = 0, v = 0. Then, provided strong
duality holds, the optimal dual variables A\*, v* are related to the gradient of p* at
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a0 . (0.0), (5.58)
8ui 8'Ui
This property can be seen in the example shown in figure 5.10, where —\* is the
slope of p* near u = 0.

Thus, when p*(u,v) is differentiable at « = 0, v = 0, and strong duality holds,
the optimal Lagrange multipliers are exactly the local sensitivities of the optimal
value with respect to constraint perturbations. In contrast to the nondifferentiable
case, this interpretation is symmetric: Tightening the ith inequality constraint
a small amount (i.e., taking w; small and negative) yields an increase in p* of
approximately —AXu;; loosening the ith constraint a small amount (i.e., taking u;
small and positive) yields a decrease in p* of approximately \fu;.

To show (5.58), suppose p*(u,v) is differentiable and strong duality holds. For
the perturbation u = te;, v = 0, where e; is the ith unit vector, we have

i P (e 0) —p* _ 9p*(0,0)
t—0 t ou;

The inequality (5.57) states that for ¢t > 0,

p*(tei7 O) - p*

e

while for ¢t < 0 we have the opposite inequality. Taking the limit ¢ — 0, with ¢ > 0,
yields
*
ap*(0,0) >
3ui

while taking the limit with ¢ < 0 yields the opposite inequality, so we conclude that

ap*(0,0)
=\
3u7; v
The same method can be used to establish
op*(0,0) _ .
8’01- '

The local sensitivity result (5.58) gives us a quantitative measure of how active
a constraint is at the optimum z*. If f;(z*) < 0, then the constraint is inactive,
and it follows that the constraint can be tightened or loosened a small amount
without affecting the optimal value. By complementary slackness, the associated
optimal Lagrange multiplier must be zero. But now suppose that f;(z*) =0, i.e.,
the ith constraint is active at the optimum. The ith optimal Lagrange multiplier
tells us how active the constraint is: If AY is small, it means that the constraint
can be loosened or tightened a bit without much effect on the optimal value; if A7
is large, it means that if the constraint is loosened or tightened a bit, the effect on
the optimal value will be great.
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Shadow price interpretation

We can also give a simple geometric interpretation of the result (5.58) in terms
of economics. We consider (for simplicity) a convex problem with no equality
constraints, which satisfies Slater’s condition. The variable x € R™ determines
how a firm operates, and the objective fj is the cost, i.e., —fq is the profit. Each
constraint f;(x) < 0 represents a limit on some resource such as labor, steel, or
warehouse space. The (negative) perturbed optimal cost function —p*(u) tells us
how much more or less profit could be made if more, or less, of each resource were
made available to the firm. If it is differentiable near w = 0, then we have

«__op*(0)
N ==

In other words, A} tells us approximately how much more profit the firm could
make, for a small increase in availability of resource i.

It follows that AF would be the natural or equilibrium price for resource 3, if
it were possible for the firm to buy or sell it. Suppose, for example, that the firm
can buy or sell resource ¢, at a price that is less than A}. In this case it would
certainly buy some of the resource, which would allow it to operate in a way that
increases its profit more than the cost of buying the resource. Conversely, if the
price exceeds A}, the firm would sell some of its allocation of resource 4, and obtain
a net gain since its income from selling some of the resource would be larger than
its drop in profit due to the reduction in availability of the resource.

Examples

In this section we show by example that simple equivalent reformulations of a
problem can lead to very different dual problems. We consider the following types
of reformulations:

e Introducing new variables and associated equality constraints.
e Replacing the objective with an increasing function of the original objective.

e Making explicit constraints implicit, 4.e., incorporating them into the domain
of the objective.

Introducing new variables and equality constraints

Consider an unconstrained problem of the form
minimize fo(Az + b). (5.59)

Its Lagrange dual function is the constant p*. So while we do have strong duality,
i.e., p* = d*, the Lagrangian dual is neither useful nor interesting.
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Now let us reformulate the problem (5.59) as

minimize  fy(y)

subject to Ax+b=y. (5.60)

Here we have introduced new variables y, as well as new equality constraints Ax +
b =1y. The problems (5.59) and (5.60) are clearly equivalent.
The Lagrangian of the reformulated problem is

L(z,y,v) = foly) + v (Az + b —y).

To find the dual function we minimize L over = and y. Minimizing over z we find
that g(v) = —oo unless ATv = 0, in which case we are left with

gv) = Vv + irylf(fo(y) - l/Ty) =pTy— 15 w),

where f§ is the conjugate of fy. The dual problem of (5.60) can therefore be
expressed as
maximize bTv — f§(v)

subject to  ATv = 0. (5-61)

Thus, the dual of the reformulated problem (5.60) is considerably more useful than
the dual of the original problem (5.59).

Example 5.5 Unconstrained geometric program. Consider the unconstrained geomet-

ric program
m

minimize log (Z exp(alz + bl)) .

We first reformulate it by introducing new variables and equality constraints:

=1

minimize  fo(y) = log (221 exp yi)
subject to Az +b=y,

where al are the rows of A. The conjugate of the log-sum-exp function is

. _ Z’;ll/ilogw ve=0, 1Tv=1
folv) = { 00 otherwise

(example 3.25, page 93), so the dual of the reformulated problem can be expressed
as
maximize b7y — E:Zl v; logv;
subject to 1Tv =1
ATy =0
v >0,

(5.62)

which is an entropy maximization problem.

Example 5.6 Norm approximation problem. We consider the unconstrained norm
approximation problem
minimize ||Az — bl|, (5.63)

where || - || is any norm. Here too the Lagrange dual function is constant, equal to
the optimal value of (5.63), and therefore not useful.
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Once again we reformulate the problem as

minimize  ||y||
subject to Az —b=y.

The Lagrange dual problem is, following (5.61),
maximize b7y
subject to |||« <1 (5.64)
ATy =0,

where we use the fact that the conjugate of a norm is the indicator function of the
dual norm unit ball (example 3.26, page 93).

The idea of introducing new equality constraints can be applied to the constraint
functions as well. Consider, for example, the problem

minimize  fo(Aoxz + bg) (5.65)
subject to  fi(Ax +b;) <0, i=1,...,m, ’
where A; € R¥*™ and fi: R"* — R are convex. (For simplicity we do not include
equality constraints here.) We introduce a new variable y; € R* fori=0,...,m,
and reformulate the problem as

minimize  fo(yo)
subject to  fi(y;) <0, i=1,...,m (5.66)
A,’I—i—bi:yi, z:(),,m

The Lagrangian for this problem is

L(Z, 40, - > Y A V05 -+, Vm) = foyo) + D Nifi(y) + Y vl (Aiw + b — 4i).
=1 1=0

To find the dual function we minimize over  and y;. The minimum over z is —oo
unless
m
§ : T, _
Ai Vv; = 0,
i=0
in which case we have, for A > 0,

g(AaV()a e ',Vm)

= Y vlbi+ inf (fo(yo) Y Nifily) =D V?Zh‘)
1=0 i=0

Yos--Ym i—

= Z vl b + i;lof (folyo) — vg wo) + Z i iilif (filys) — (vi/N) T wi)

i=0 i=1

= > b= f5(0) = D NS Wi/ M)
1=0 =1
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The last expression involves the perspective of the conjugate function, and is there-
fore concave in the dual variables. Finally, we address the question of what happens
when A = 0, but some \; are zero. If A\; = 0 and v; # 0, then the dual function is
—oo. If \; =0 and v; = 0, however, the terms involving y;, v;, and \; are all zero.
Thus, the expression above for g is valid for all A = 0, if we take A\; f*(v;/A;) =0
when A\; =0 and v; = 0, and A, f*(v;/A;) = oo when \; =0 and v; # 0.

Therefore we can express the dual of the problem (5.66) as

maximize Yoo vl by — fi(vo) — Doy NifF(vi/ i)
subject to A =0 (5.67)
Yito Afvi=0.

Example 5.7 Inequality constrained geometric program. The inequality constrained
geometric program

o Ko T
minimize  log (> ,°, e“ﬂkz+b0k)

subject to log 25:11 e“gc”“rbik) <0, 1=1,...,m

is of the form (5.65) with f; : R¥i — R given by fi(y) = log (Zf;l ey*’). The
conjugate of this function is

Fr(w) = Zi{;l vilogyy v=0, 1Tv=1
‘ 00 otherwise.

Using (5.67) we can immediately write down the dual problem as

maximize b3 vp — 25:01 vok log vok + 2211 (biTz/i — ZkK:’l Vik log(yik/Ai))
subject to vy > 0, 1Ty =1
vi=0, 1Tv,i=X, i=1,...,m
Ai>0, i=1,...,m
Zﬂi AlTl/l =5 0,
i=0

which further simplifies to

maximize b3 vo — 25:01 vok log vok + Z:’;l (szuZ- - 25;1 Vik log(yik/lTui))
subject to 1v; =0, ¢=0,...,m

1Ty =1

Z:‘lo A?Vz =0.

Transforming the objective

If we replace the objective fy by an increasing function of fj, the resulting problem
is clearly equivalent (see §4.1.3). The dual of this equivalent problem, however, can
be very different from the dual of the original problem.

Example 5.8 We consider again the minimum norm problem

minimize || Az — b||,
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where || - || is some norm. We reformulate this problem as

minimize (1/2)”?!”2
subject to Az —b=1y.

Here we have introduced new variables, and replaced the objective by half its square.
Evidently it is equivalent to the original problem.
The dual of the reformulated problem is

maximize —(1/2)||v|? +b"v
subject to ATy =0,

where we use the fact that the conjugate of (1/2)||- ]| is (1/2)]-||? (see example 3.27,
page 93).

Note that this dual problem is not the same as the dual problem (5.64) derived earlier.

Implicit constraints

The next simple reformulation we study is to include some of the constraints in
the objective function, by modifying the objective function to be infinite when the
constraint is violated.

Example 5.9 Linear program with box constraints. We consider the linear program

minimize ¢’z
subject to Az =1b (5.68)
[z =<u

where A € RP*™ and | < u. The constraints [ < x < u are sometimes called box
constraints or variable bounds.

We can, of course, derive the dual of this linear program. The dual will have a
Lagrange multiplier v associated with the equality constraint, A\; associated with the
inequality constraint x < u, and A2 associated with the inequality constraint [ < z.
The dual is
maximize —bTv — AFu 4+ ALl
subject to ATv+ A —da+c=0 (5.69)
A1=0, A =0

Instead, let us first reformulate the problem (5.68) as

minimize  fo(x)

subject to Az = b, (5.70)

where we define

folz) = e 1<z=<u
=) oo otherwise.

The problem (5.70) is clearly equivalent to (5.68); we have merely made the explicit
box constraints implicit.
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The dual function for the problem (5.70) is

glv) = inf (cTyc +v" (Az — b))

1Rz=<u
= b v—u"ATv+e) +1T AT+ o)
where y;” = max{y;, 0}, y; = max{—y;,0}. So here we are able to derive an analyt-
ical formula for g, which is a concave piecewise-linear function.

The dual problem is the unconstrained problem
maximize —b v —ul(ATv+¢)” +1T(ATv + o), (5.71)

which has a quite different form from the dual of the original problem.

(The problems (5.69) and (5.71) are closely related, in fact, equivalent; see exer-
cise 5.8.)

Theorems of alternatives

Weak alternatives via the dual function

In this section we apply Lagrange duality theory to the problem of determining
feasibility of a system of inequalities and equalities

filz) <0, i=1,...,m, hi(z) =0, i=1,...,p. (5.72)

We assume the domain of the inequality system (5.72), D = (), dom f; N
P_, dom h;, is nonempty. We can think of (5.72) as the standard problem (5.1),
with objective fy =0, i.e.,

minimize 0
subject to  fi(z) <
hi(z) =

i=1,...,m (5.73)

0,
0, 2=1,...,p.
This problem has optimal value

P = { 0 (5.72) is feasible

oo (5.72) is infeasible, (5.74)

so solving the optimization problem (5.73) is the same as solving the inequality
system (5.72).

The dual function

We associate with the inequality system (5.72) the dual function

g\ v) = mlng) <Z Aifi(w) + Z Vz'hz‘(fl?)> ;
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which is the same as the dual function for the optimization problem (5.73). Since

fo = 0, the dual function is positive homogeneous in (X, v): For a > 0, g(a\, av) =

ag(\,v). The dual problem associated with (5.73) is to maximize g(\,v) subject

to A = 0. Since g is homogeneous, the optimal value of this dual problem is given
by

g — { oo A=0, g(A\v)>0 %s .feasime (5.75)

0 A>0, g(A\,v) >0 is infeasible.

Weak duality tells us that d* < p*. Combining this fact with (5.74) and (5.75)
yields the following: If the inequality system

A=0,  g(\v)>0 (5.76)

is feasible (which means d* = co), then the inequality system (5.72) is infeasible
(since we then have p* = 00). Indeed, we can interpret any solution (A, v) of the
inequalities (5.76) as a proof or certificate of infeasibility of the system (5.72).

We can restate this implication in terms of feasibility of the original system: If
the original inequality system (5.72) is feasible, then the inequality system (5.76)
must be infeasible. We can interpret an x which satisfies (5.72) as a certificate
establishing infeasibility of the inequality system (5.76).

Two systems of inequalities (and equalities) are called weak alternatives if at
most one of the two is feasible. Thus, the systems (5.72) and (5.76) are weak
alternatives. This is true whether or not the inequalities (5.72) are convex (i.e.,
fi convex, h; affine); moreover, the alternative inequality system (5.76) is always
convex (i.e., g is concave and the constraints A; > 0 are convex).

Strict inequalities
We can also study feasibility of the strict inequality system

filz) <0, i=1,...,m, hi(z) =0, i=1,...,p. (5.77)
With ¢ defined as for the nonstrict inequality system, we have the alternative

inequality system
A >0, A#£0, g(A,v) > 0. (5.78)

We can show directly that (5.77) and (5.78) are weak alternatives. Suppose there
exists an & with f;(Z) < 0, h;(Z) = 0. Then for any A = 0, A # 0, and v,

ML) + -+ A fn(E) + 10 (T) + - + vphy(2) < 0.
It follows that

g\ v) = LIIEl’fD <Z)\1f1($)+zl/zhz($)>
i=1 i=1

< 0.

IN
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Therefore, feasibility of (5.77) implies that there does not exist (A, v) satisfy-
ing (5.78).

Thus, we can prove infeasibility of (5.77) by producing a solution of the sys-
tem (5.78); we can prove infeasibility of (5.78) by producing a solution of the
system (5.77).

Strong alternatives

When the original inequality system is convex, i.e., f; are convex and h; are affine,
and some type of constraint qualification holds, then the pairs of weak alternatives
described above are strong alternatives, which means that exactly one of the two
alternatives holds. In other words, each of the inequality systems is feasible if and
only if the other is infeasible.

In this section we assume that f; are convex and h; are affine, so the inequality
system (5.72) can be expressed as

filx) <0, i=1,...,m, Az =0,
where A € RP*".

Strict inequalities

We first study the strict inequality system
filx) <0, i=1,...,m, Az =0, (5.79)

and its alternative
A =0, A#0, g\, v) > 0. (5.80)

We need one technical condition: There exists an x € relint D with Az = b. In
other words we not only assume that the linear equality constraints are consistent,
but also that they have a solution in relint D. (Very often D = R", so the condition
is satisfied if the equality constraints are consistent.) Under this condition, exactly
one of the inequality systems (5.79) and (5.80) is feasible. In other words, the
inequality systems (5.79) and (5.80) are strong alternatives.

We will establish this result by considering the related optimization problem

minimize s
subject to  fi(x) —s <0, i=1,....,m (5.81)
Az =10

with variables x, s, and domain D x R. The optimal value p* of this problem is
negative if and only if there exists a solution to the strict inequality system (5.79).
The Lagrange dual function for the problem (5.81) is

2€D, s —00 otherwise.

inf <s—|—§:)\i(ﬁ($)_5)_|_VT(AI_b)> _{ g\ v) 1Tx=1
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Therefore we can express the dual problem of (5.81) as

maximize g(\,v)
subject to A >0, 1TA=1.

Now we observe that Slater’s condition holds for the problem (5.81). By the
hypothesis there exists an & € relint D with AZ = b. Choosing any § > max; f;(Z)
yields a point (Z, §) which is strictly feasible for (5.81). Therefore we have d* = p*,
and the dual optimum d* is attained. In other words, there exist (A*, v*) such that

g(\*,v*) = p*, A =0, 17\ =1. (5.82)

Now suppose that the strict inequality system (5.79) is infeasible, which means that
p* > 0. Then (\*,v*) from (5.82) satisfy the alternate inequality system (5.80).
Similarly, if the alternate inequality system (5.80) is feasible, then d* = p* >
0, which shows that the strict inequality system (5.79) is infeasible. Thus, the
inequality systems (5.79) and (5.80) are strong alternatives; each is feasible if and
only if the other is not.

Nonstrict inequalities

We now consider the nonstrict inequality system
file) <0, i=1,...,m, Az = b, (5.83)

and its alternative
A =0, g\, v) > 0. (5.84)

We will show these are strong alternatives, provided the following conditions hold:
There exists an = € relint D with Az = b, and the optimal value p* of (5.81) is
attained. This holds, for example, if D = R" and max; f;(z) — oo as * — 0.
With these assumptions we have, as in the strict case, that p* = d*, and that both
the primal and dual optimal values are attained. Now suppose that the nonstrict
inequality system (5.83) is infeasible, which means that p* > 0. (Here we use the
assumption that the primal optimal value is attained.) Then (\*,v*) from (5.82)
satisfy the alternate inequality system (5.84). Thus, the inequality systems (5.83)
and (5.84) are strong alternatives; each is feasible if and only if the other is not.

Examples

Linear inequalities

Consider the system of linear inequalities Az < b. The dual function is

TN ATX=0
—00 otherwise.

g(A) = inf M (Az —b) = {

The alternative inequality system is therefore

A= 0, ATx =0, bI'X <.
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These are, in fact, strong alternatives. This follows since the optimum in the related
problem (5.81) is achieved, unless it is unbounded below.

We now consider the system of strict linear inequalities Ax < b, which has the
strong alternative system

A >0, \#£0, ATX =0, bI'A <.

In fact we have encountered (and proved) this result before, in §2.5.1; see (2.17)
and (2.18) (on page 50).

Intersection of ellipsoids

We consider m ellipsoids, described as
& ={z| fi(z) < 0},

with fi(z) = 2T Az + 26Tz 4+ ¢;, i = 1,...,m, where A; € S .. We ask when
the intersection of these ellipsoids has nonempty interior. This is equivalent to
feasibility of the set of strict quadratic inequalities

filx) =aT Az + 20z +¢; <0, i=1,...,m. (5.85)
The dual function g is

g(N) = inf (2T ANz +26(N) T2 + c(N))

{ —bAN)TAN)TBN) +c(A) AN =0, bA) € R(AN))

—00 otherwise,

where . . .
AN =D NA;L ) =D b, (V) =) dies.
=1 =1 =1

Note that for A »= 0, A # 0, we have A(\) > 0, so we can simplify the expression
for the dual function as
g(N) = =b(N)TAMN)TIB(A) + (V).
The strong alternative of the system (5.85) is therefore
A= 0, A#0, —b(N)TAN)TIB(N) + ¢(N) > 0. (5.86)

We can give a simple geometric interpretation of this pair of strong alternatives.

For any nonzero X\ > 0, the (possibly empty) ellipsoid
E={z | z" ANz +2b(\) Tz + ¢(N) < 0}

contains & N -+ N &y, since f;(z) < 0 implies Y ;" A\ fi(z) < 0. Now, &, has
empty interior if and only if

inf (2" ANz + 26(N) T2 + (X)) = =b(A\)TAN)b(A) + ¢(N) > 0.

Therefore the alternative system (5.86) means that £, has empty interior.

Weak duality is obvious: If (5.86) holds, then &) contains the intersection & N
-+ N &y, and has empty interior, so naturally the intersection has empty interior.
The fact that these are strong alternatives states the (not obvious) fact that if the
intersection & N ---N &, has empty interior, then we can construct an ellipsoid &y
that contains the intersection and has empty interior.
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Farkas’ lemma

In this section we describe a pair of strong alternatives for a mixture of strict and
nonstrict linear inequalities, known as Farkas’ lemma: The system of inequalities

Az <0, 'z <0, (5.87)
where A € R™*" and ¢ € R", and the system of equalities and inequalities
ATy +ec=0, y >0, (5.88)

are strong alternatives.
We can prove Farkas’ lemma directly, using LP duality. Consider the LP

minimize Lz
subject to Ax <0, (5.89)
and its dual
maximize 0
subject to ATy +c=0 (5.90)

y = 0.

The primal LP (5.89) is homogeneous, and so has optimal value 0, if (5.87) is
not feasible, and optimal value —oo, if (5.87) is feasible. The dual LP (5.90) has
optimal value 0, if (5.88) is feasible, and optimal value —oo, if (5.88) is infeasible.

Since & = 0 is feasible in (5.89), we can rule out the one case in which strong
duality can fail for LPs, so we must have p* = d*. Combined with the remarks
above, this shows that (5.87) and (5.88) are strong alternatives.

Example 5.10 Arbitrage-free bounds on price. We consider a set of n assets, with
prices at the beginning of an investment period p1, ..., pn, respectively. At the end
of the investment period, the value of the assets is v1,...,v,. If 21,..., T, represents
the initial investment in each asset (with z; < 0 meaning a short position in asset j),
the cost of the initial investment is pTz, and the final value of the investment is v7 z.

The value of the assets at the end of the investment period, v, is uncertain. We will
assume that only m possible scenarios, or outcomes, are possible. If outcome ¢ occurs,
the final value of the assets is v(¥), and therefore, the overall value of the investments
is v T,

If there is an investment vector = with p?x < 0, and in all possible scenarios, the
final value is nonnegative, i.e., v'9Tz > 0 for s = 1,...,m, then an arbitrage is said
to exist. The condition pTx < 0 means you are paid to accept the investment mix,
and the condition v®»%'z > 0 for ¢ = 1,...,m means that no matter what outcome
occurs, the final value is nonnegative, so an arbitrage corresponds to a guaranteed
money-making investment strategy. It is generally assumed that the prices and values
are such that no arbitrage exists. This means that the inequality system

Va =0, pTx <0
(1)

is infeasible, where V;; = v

Using Farkas’ lemma, we have no arbitrage if and only if there exists y such that

~VTy+p=0, y=0.
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We can use this characterization of arbitrage-free prices and values to solve several
interesting problems.

Suppose, for example, that the values V' are known, and all prices except the last
one, pn, are known. The set of prices p, that are consistent with the no-arbitrage
assumption is an interval, which can be found by solving a pair of LPs. The optimal
value of the LP o

minimize pp,

subject to VTy=p, y>0,
with variables p, and y, gives the smallest possible arbitrage-free price for asset n.
Solving the same LP with maximization instead of minimization yields the largest
possible price for asset n. If the two values are equal, i.e., the no-arbitrage assumption
leads us to a unique price for asset n, we say the market is complete. For an example,
see exercise 5.38.

This method can be used to find bounds on the price of a derivative or option that
is based on the final value of other underlying assets, i.e., when the value or payoff
of asset n is a function of the values of the other assets.

Generalized inequalities

In this section we examine how Lagrange duality extends to a problem with gen-
eralized inequality constraints

minimize  fo(z)
subject to  fi(x) =
hi(x) =

k, 0, i=1,....m (5.91)
0, 2=1,...,p,

where K; C R¥ are proper cones. For now, we do not assume convexity of the prob-

lem (5.91). We assume the domain of (5.91), D = (-, dom f; N (;_, dom h;, is
nonempty.

The Lagrange dual

With each generalized inequality f;(z) <k, 0 in (5.91) we associate a Lagrange
multiplier vector A; € R* and define the associated Lagrangian as

L(z, A\ v) = fo(z) + Al f1(z) + - + AL fn (@) + 10 (2) + - + vphyp(2),

where A = (A1,...,\,) and v = (11, ...,1p). The dual function is defined exactly
as in a problem with scalar inequalities:

g\ v) = xig%L(m,)\,U) = ;2% (fo(.’[?) + Z/\szl(m) + Zyihi(x)> :
i=1 i=1

Since the Lagrangian is affine in the dual variables (A, v), and the dual function is
a pointwise infimum of the Lagrangian, the dual function is concave.



5.9 Generalized inequalities

265

As in a problem with scalar inequalities, the dual function gives lower bounds
on p*, the optimal value of the primal problem (5.91). For a problem with scalar
inequalities, we require A\; > 0. Here the nonnegativity requirement on the dual
variables is replaced by the condition

)\iiKi*O, i=1,...,m,

where K denotes the dual cone of K;. In other words, the Lagrange multipliers
associated with inequalities must be dual nonnegative.

Weak duality follows immediately from the definition of dual cone. If A; = - 0
and fi(%) =g, 0, then \I f;(Z) < 0. Therefore for any primal feasible point ¥ and
any \; = K 0, we have

Fol@) + D A ul@) + D wiha(®) < fo(@).
i=1 1=1

Taking the infimum over Z yields g(A,v) < p*.
The Lagrange dual optimization problem is

maximize g(\,v)

subject to A =g+ 0, i=1,...,m. (5.92)

We always have weak duality, i.e., d* < p*, where d* denotes the optimal value of
the dual problem (5.92), whether or not the primal problem (5.91) is convex.

Slater’s condition and strong duality

As might be expected, strong duality (d* = p*) holds when the primal problem
is convex and satisfies an appropriate constraint qualification. For example, a
generalized version of Slater’s condition for the problem

minimize  fo(z)
subject to  fi(z) <k, 0, i=1,....,m
Ax = b,

where fj is convex and f; is K;-convex, is that there exists an = € relint D with
Az = b and f;(x) <k, 0, ¢ =1,...,m. This condition implies strong duality (and
also, that the dual optimum is attained).

Example 5.11 Lagrange dual of semidefinite program. We consider a semidefinite
program in inequality form,
minimize ¢’z

subject to x1F1 4+ - +xF +G <0 (5.93)

where Fi, ..., F,,G € S*. (Here fi is affine, and K; is S%, the positive semidefinite
cone.)

We associate with the constraint a dual variable or multiplier Z € S*, so the La-
grangian is
Lz, Z) = da+tr(@mFi+ - +x.Fn+G)Z)
= zi(aa+tr(FA2) 4+ + an(en +tr(Fo2)) + tr(GZ),
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which is affine in z. The dual function is given by

tr(GZ) tr(FiZ)4+¢ =0, i=1,...,n

9(2) = ir;fL(l‘, Z) = { —c0 otherwise.

The dual problem can therefore be expressed as

maximize tr(GZ)
subject to tr(F;Z)4+¢ =0, i=1,...,n
Z = 0.

We use the fact that S¥ is self-dual, i.e., (S%)* = Sk ; see §2.6.
+ + +

Strong duality obtains if the semidefinite program (5.93) is strictly feasible, i.e., there
exists an x with

Example 5.12 Lagrange dual of cone program in standard form. We consider the
cone program
minimize ¢’z
subject to Ax =b
T =k 0,

where A € R™*™, b € R™, and K C R" is a proper cone. We associate with the
equality constraint a multiplier v € R™, and with the nonnegativity constraint a
multiplier A € R"™. The Lagrangian is

Lz, \v) =c"a — Nz 4+ 07 (Az — b),
so the dual function is

by ATv—X4+c=0

g\ v) = ir;fL(:E,)\, v) = { —00 otherwise.

The dual problem can be expressed as

maximize —bTv
subject to ATv4c= A
A=k 0.

By eliminating A and defining y = —v, this problem can be simplified to

maximize b’y
subject to ATy <x+ ¢,
which is a cone program in inequality form, involving the dual generalized inequality.

Strong duality obtains if the Slater condition holds, i.e., there is an x >x 0 with
Az =b.

5.9.2 Optimality conditions

The optimality conditions of §5.5 are readily extended to problems with generalized
inequalities. We first derive the complementary slackness conditions.
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Complementary slackness

Assume that the primal and dual optimal values are equal, and attained at the
optimal points z*, A\*, v*. As in §5.5.2, the complementary slackness conditions
follow directly from the equality fo(z*) = g(A*,v*), along with the definition of g.
We have

fo(z™) = g\ v7)
< fo@) 4D N fi@) Y vihi(at)
i=1 i=1
< fO(x*)v

and therefore we conclude that x* minimizes L(x, \*,v*), and also that the two
sums in the second line are zero. Since the second sum is zero (since x* satisfies
the equality constraints), we have > A#7 f;(z*) = 0. Since each term in this
sum is nonpositive, we conclude that

NP f(a*) =0, i=1,...,m, (5.94)

which generalizes the complementary slackness condition (5.48). From (5.94) we
can conclude that

)\: FK; 0 = fl(l’*) = 0, fl(x*) <K; O, = )\: =0.

However, in contrast to problems with scalar inequalities, it is possible to sat-
isfy (5.94) with AF # 0 and f;(«*) # 0.

KKT conditions

Now we add the assumption that the functions f;, h; are differentiable, and gener-
alize the KKT conditions of §5.5.3 to problems with generalized inequalities. Since
x* minimizes L(z, \*,v*), its gradient with respect to « vanishes at a*:

Vio(a*) + Y Dfi(x*)"A\ + ) v Vhi(z*) =0,
i=1

i=1

where Df;(z*) € R¥*™ is the derivative of f; evaluated at z* (see §A.4.1). Thus,
if strong duality holds, any primal optimal 2* and any dual optimal (A*,*) must
satisfy the optimality conditions (or KKT conditions)

filz*) =<k, 0, i=1,....m
hi(z*y = 0, i=1,...,p
)\: EK;‘ 0, 1= 1, ,m
)\;*Tfl-(x*) = 0, i=1,...,m
Vfola®) + 2200, Dfi(@*)TNr + 200, viVii(z*) = 0.
(5.95)

If the primal problem is convex, the converse also holds, i.e., the conditions (5.95)
are sufficient conditions for optimality of z*, (A*,v*).



268

5 Duality

5.9.3

Perturbation and sensitivity analysis

The results of §5.6 can be extended to problems involving generalized inequalities.
We consider the associated perturbed version of the problem,

minimize  fo(x)
subject to  fi(7) <k, u;, i=1,...,m
hi(x):viv i=1,...,p,

where u; € R¥, and v € RP. We define p*(u,v) as the optimal value of the
perturbed problem. As in the case with scalar inequalities, p* is a convex function
when the original problem is convex.

Now let (A\*,*) be optimal for the dual of the original (unperturbed) problem,
which we assume has zero duality gap. Then for all © and v we have

m

p*(u,v) > p* — Z /\;Tui - V*Tv,
i=1

the analog of the global sensitivity inequality (5.57). The local sensitivity result
holds as well: If p*(u,v) is differentiable at u = 0, v = 0, then the optimal dual
variables A\ satisfies

Af = —=V,,p*(0,0),

?

the analog of (5.58).

Example 5.13 Semidefinite program in inequality form. We consider a semidefinite
program in inequality form, as in example 5.11. The primal problem is

minimize ¢’z
subject to F(z) =z1Fi+ -+ xFn + G <0,

with variable z € R" (and F1,..., F,, G € S*), and the dual problem is

maximize tr(GZ)
subject to tr(F;Z)+c¢; =0, i=1,...,n
Z >0,
with variable Z € S*.

Suppose that * and Z* are primal and dual optimal, respectively, with zero duality
gap. The complementary slackness condition is tr(F(z*)Z*) = 0. Since F(z*) <0
and Z* > 0, we can conclude that F(z*)Z* = 0. Thus, the complementary slackness
condition can be expressed as

R(F(z7)) L R(Z7),

i.e., the ranges of the primal and dual matrices are orthogonal.

Let p*(U) denote the optimal value of the perturbed SDP

minimize ¢’z

subject to F(z)=x1FA+- +z.,F, + G U
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Then we have, for all U, p*(U) > p* — tr(Z*U). If p*(U) is differentiable at U = 0,
then we have

Vp*(0) = —Z*.
This means that for U small, the optimal value of the perturbed SDP is very close
to (the lower bound) p* — tr(Z*U).

Theorems of alternatives
We can derive theorems of alternatives for systems of generalized inequalities and
equalities

filz) =k, 0, i=1,...,m, hi(x)=0, i=1,...,p, (5.96)

where K; C R¥ are proper cones. We will also consider systems with strict in-
equalities,

filz) <k, 0, i=1,...,m, hi(x)=0, i=1,...,p. (5.97)

We assume that D = (-, dom f; N ();_, dom h; is nonempty.

Weak alternatives
We associate with the systems (5.96) and (5.97) the dual function
m P
g0 = inf (Z RS umxx))

where A = (A\1,...,\p) with \; € R and v € R”. In analogy with (5.76), we
claim that
Aimg: 0, i=1,...,m, g\, v) >0 (5.98)

is a weak alternative to the system (5.96). To verify this, suppose there exists an
x satisfying (5.96) and (), v) satisfying (5.98). Then we have a contradiction:

0 < g0 V) < AT Fu(@) + -+ AL fon (@) + v1h1 (2) + - + vphy(2) < 0.

Therefore at least one of the two systems (5.96) and (5.98) must be infeasible, i.e.,
the two systems are weak alternatives.
In a similar way, we can prove that (5.97) and the system

)\ziK:‘O7 221,,m, )\7&07 g()\71/)20
form a pair of weak alternatives.

Strong alternatives

We now assume that the functions f; are K;-convex, and the functions h; are affine.
We first consider a system with strict inequalities

filx) =k, 0, i=1,...,m,  Ax=b, (5.99)
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and its alternative
Aimg: 0, i=1,...,m, A #£ 0, g\, v) > 0. (5.100)

We have already seen that (5.99) and (5.100) are weak alternatives. They are also
strong alternatives provided the following constraint qualification holds: There
exists an & € relint D with AT = b. To prove this, we select a set of vectors
e; =k, 0, and consider the problem

minimize s
subject to  f;(7) <k, se;, i=1
Ax =1b

m (5.101)

with variables x and s € R.. Slater’s condition holds since (%, §) satisfies the strict
inequalities f;(Z) <k, Se; provided § is large enough.
The dual of (5.101) is

maximize g(\,v)
subject to A =g+ 0, i=1,...,m (5.102)
Z;Zl 6?A1 = 1
with variables A = (A1,..., An) and v.

Now suppose the system (5.99) is infeasible. Then the optimal value of (5.101)
is nonnegative. Since Slater’s condition is satisfied, we have strong duality and the
dual optimum is attained. Therefore there exist (A, ) that satisfy the constraints
of (5.102) and g(A,7) > 0, i.e., the system (5.100) has a solution.

As we noted in the case of scalar inequalities, existence of an x € relint D with
Az = b is not sufficient for the system of nonstrict inequalities

fl(l‘) jKi 07 izl,...,m, Ax =10
and its alternative
AitKi*Oy 1=1,...,m, g(A,v) >0

to be strong alternatives. An additional condition is required, e.g., that the optimal
value of (5.101) is attained.

Example 5.14 Feasibility of a linear matriz inequality. The following systems are
strong alternatives:

Flx)=z1Fi 4+ +xoF + G <0,
where F;, G € S*, and
Z=0, Z#0, tr(GZ)>0, tr(FZ)=0, i=1,...,n,

where Z € S*. This follows from the general result, if we take for K the positive
semidefinite cone S, and

tr(GZ) tr(F;Z)=0, i=1,...,n
—00 otherwise.

9(2) = inf (tr(F(2)2)) = {
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The nonstrict inequality case is slightly more involved, and we need an extra assump-
tion on the matrices F; to have strong alternatives. One such condition is

n

ZUZ'FZ' i0:>iUze =0.

i=1 i=1
If this condition holds, the following systems are strong alternatives:
Fz)=z1FA+- +z. Fn + G =<0

and
Z >0, tr(GZ) > 0, tr(F;Z)=0, i=1,...,n

(see exercise 5.44).
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Exercises

Basic definitions
A simple example. Consider the optimization problem

minimize 2% + 1
subject to  (x —2)(x —4) <0,
with variable z € R.
(a) Analysis of primal problem. Give the feasible set, the optimal value, and the optimal

solution.

(b) Lagrangian and dual function. Plot the objective z? +1 versus . On the same plot,
show the feasible set, optimal point and value, and plot the Lagrangian L(z, A) versus
x for a few positive values of A. Verify the lower bound property (p* > inf, L(x, \)
for A > 0). Derive and sketch the Lagrange dual function g.

(¢) Lagrange dual problem. State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal value and dual optimal solution \*.
Does strong duality hold?

(d) Sensitivity analysis. Let p*(u) denote the optimal value of the problem

minimize 2 +1
subject to  (z —2)(x —4) < u,

as a function of the parameter u. Plot p*(u). Verify that dp*(0)/du = —\*.

Weak duality for unbounded and infeasible problems. The weak duality inequality, d* < p*,
clearly holds when d* = —oo or p* = co. Show that it holds in the other two cases as
well: If p* = —oo, then we must have d* = —oo, and also, if d* = oo, then we must have
p* = oo.

Problems with one inequality constraint. Express the dual problem of

minimize Tz
subject to  f(x) <0,

with ¢ # 0, in terms of the conjugate f*. Explain why the problem you give is convex.
We do not assume f is convex.

Examples and applications

Interpretation of LP dual via relaxzed problems. Consider the inequality form LP

minimize ¢’z
subject to Az <b,

with A € R™*", b € R™. In this exercise we develop a simple geometric interpretation
of the dual LP (5.22).

Let w € RY'. If z is feasible for the LP, i.e., satisfies Az < b, then it also satisfies the
inequality

wl Az < wTb.

Geometrically, for any w > 0, the halfspace H,, = {z | w" Az < wTb} contains the feasible
set for the LP. Therefore if we minimize the objective ¢« over the halfspace H,, we get
a lower bound on p*.
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5.5

5.6

(a) Derive an expression for the minimum value of ¢”z over the halfspace H, (which
will depend on the choice of w > 0).

(b) Formulate the problem of finding the best such bound, by maximizing the lower
bound over w > 0.

(c) Relate the results of (a) and (b) to the Lagrange dual of the LP, given by (5.22).

Dual of general LP. Find the dual function of the LP

minimize Tz
subject to Gx =< h
Az =b.

Give the dual problem, and make the implicit equality constraints explicit.
Lower bounds in Chebyshev approximation from least-squares. Consider the Chebyshev
or {so-norm approximation problem

minimize [|Az — b||o, (5.103)

where A € R™*" and rank A = n. Let zs, denote an optimal solution (there may be
multiple optimal solutions; z.n denotes one of them).

The Chebyshev problem has no closed-form solution, but the corresponding least-squares
problem does. Define

x1 = argmin || Az — bllz = (ATA) "t A b

We address the following question. Suppose that for a particular A and b we have com-
puted the least-squares solution zis (but not zcn). How suboptimal is zis for the Chebyshev
problem? In other words, how much larger is ||Azis — b||co than |[|[Azch — bl|o?

(a) Prove the lower bound
| Azts — blloo < V|| Aet — blloo,
using the fact that for all z € R™,

1
Jm

212 < llzlloo < llz]l2-

(b) In example 5.6 (page 254) we derived a dual for the general norm approximation
problem. Applying the results to the {o-norm (and its dual norm, the ¢;-norm), we
can state the following dual for the Chebyshev approximation problem:

maximize bTv
subject to  ||v]j1 <1 (5.104)
ATy =o0.

Any feasible v corresponds to a lower bound b v on || Az, — b co.
Denote the least-squares residual as rs = b — Axjs. Assuming rjs # 0, show that

v=—ns/lnsll, 7 =mns/lnslh,
are both feasible in (5.104). By duality b*# and b” & are lower bounds on ||Azc, —

blleo. Which is the better bound? How do these bounds compare with the bound
derived in part (a)?
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5.7 Piecewise-linear minimization. We consider the convex piecewise-linear minimization
problem
minimize max;—1,m(al x + b;) (5.105)

with variable z € R".

(a) Derive a dual problem, based on the Lagrange dual of the equivalent problem

minimize max;=1,....m Yi
subject to afz+b;=vy;, i=1,...,m,

with variables z € R", y € R™.

(b) Formulate the piecewise-linear minimization problem (5.105) as an LP, and form the
dual of the LP. Relate the LP dual to the dual obtained in part (a).

(c) Suppose we approximate the objective function in (5.105) by the smooth function

fo(x) = log (Z exp(a; © + bi)) ,

i=1
and solve the unconstrained geometric program
minimize log (Z:il exp(al x + bl)) . (5.106)

A dual of this problem is given by (5.62). Let py,; and py, be the optimal values
of (5.105) and (5.106), respectively. Show that

0 < pap — Ppwi < logm.

(d) Derive similar bounds for the difference between py,; and the optimal value of

minimize (1/7)log (Zzl exp(y(af x + bz))) ,
where v > 0 is a parameter. What happens as we increase 7

5.8 Relate the two dual problems derived in example 5.9 on page 257.

5.9 Suboptimality of a simple covering ellipsoid. Recall the problem of determining the min-
imum volume ellipsoid, centered at the origin, that contains the points a1,...,a, € R"
(problem (5.14), page 222):

minimize  fo(X) = logdet(X 1)
subject to afXa; <1, i=1,...,m,

with dom fy = S, . We assume that the vectors ai, ..., am span R™ (which implies that
the problem is bounded below).

(a) Show that the matrix

m -1
Xsim = (Z awf) )

k=1
is feasible. Hint. Show that

T
a;

m T
{ D ket OkOk ? } =0,

and use Schur complements (§A.5.5) to prove that a} Xa; < 1fori=1,...,m.
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(b) Now we establish a bound on how suboptimal the feasible point X is, via the dual
problem,
maximize logdet (Z:’;l /\iaiaiT) 1" +n
subject to A\ > 0,

with the implicit constraint 221 )\iaiaiT > 0. (This dual is derived on page 222.)
To derive a bound, we restrict our attention to dual variables of the form \ = ¢1,
where ¢ > 0. Find (analytically) the optimal value of ¢, and evaluate the dual
objective at this A. Use this to prove that the volume of the ellipsoid {u | ul Xgimu <
1} is no more than a factor (m/n)"/? more than the volume of the minimum volume
ellipsoid.

5.10 Optimal experiment design. The following problems arise in experiment design (see §7.5).

(a) D-optimal design.
minimize logdet (Zle miviv;‘r) o
subject to x>0, 1Tz =1.

(b) A-optimal design.

o e . —1
minimize tr P xiviv-T
=1 K4

subject to x>0, 1Tz =1.

The domain of both problems is {z | > zv;v{ > 0}. The variable is z € R”; the
vectors vi,...,vp, € R™ are given.

Derive dual problems by first introducing a new variable X € S™ and an equality con-
straint X = Zle z;v;vf, and then applying Lagrange duality. Simplify the dual prob-
lems as much as you can.

5.11 Derive a dual problem for

minimize Y [[Aiz + bil2 + (1/2)]Jx — zol[3-

The problem data are A; € R™*", b; € R™, and o € R". First introduce new variables
y; € R™ and equality constraints y; = A;x + b;.

5.12 Analytic centering. Derive a dual problem for

minimize — " log(b; — a; x)
with domain {z | alz < b;, i = 1,...,m}. First introduce new variables y; and equality

constraints y; = b; — aiTm.

(The solution of this problem is called the analytic center of the linear inequalities afz <
bi, i = 1,...,m. Analytic centers have geometric applications (see §8.5.3), and play an
important role in barrier methods (see chapter 11).)

5.13 Lagrangian relaxation of Boolean LP. A Boolean linear program is an optimization prob-

lem of the form S -
minimize ¢ x
subject to Ax <b
4356{0,1}, i=1,...,n,
and is, in general, very difficult to solve. In exercise 4.15 we studied the LP relaxation of
this problem,
minimize Tz
subject to Az <b (5.107)
0<z; <1, i=1,...,n,
which is far easier to solve, and gives a lower bound on the optimal value of the Boolean
LP. In this problem we derive another lower bound for the Boolean LP, and work out the
relation between the two lower bounds.
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(a) Lagrangian relazation. The Boolean LP can be reformulated as the problem

minimize ¢’z
subject to Ax <b

zi(l—x) =0, i=1,...,n,

which has quadratic equality constraints. Find the Lagrange dual of this problem.
The optimal value of the dual problem (which is convex) gives a lower bound on
the optimal value of the Boolean LP. This method of finding a lower bound on the
optimal value is called Lagrangian relaxation.

(b) Show that the lower bound obtained via Lagrangian relaxation, and via the LP
relaxation (5.107), are the same. Hint. Derive the dual of the LP relaxation (5.107).

5.14 A penalty method for equality constraints. We consider the problem

minimize  fo(z)

subject to Az = b, (5.108)

where fo : R” — R is convex and differentiable, and A € R™*"™ with rank A = m.
In a quadratic penalty method, we form an auxiliary function

$(z) = fo(z) + allAz — blI3,

where @ > 0 is a parameter. This auxiliary function consists of the objective plus the
penalty term oAz —b||3. The idea is that a minimizer of the auxiliary function, &, should
be an approximate solution of the original problem. Intuition suggests that the larger the
penalty weight «, the better the approximation Z to a solution of the original problem.

Suppose Z is a minimizer of ¢. Show how to find, from %, a dual feasible point for (5.108).
Find the corresponding lower bound on the optimal value of (5.108).

5.15 Consider the problem

minimize  fo(x)

subject to  fi(xz) <0, i=1,...,m, (5.109)

where the functions f; : R” — R are differentiable and convex. Let hi,...,hn : R > R
be increasing differentiable convex functions. Show that

m

$(z) = fo(@) + Y _ ha(filx))

i=1
is convex. Suppose & minimizes ¢. Show how to find from Z a feasible point for the dual
of (5.109). Find the corresponding lower bound on the optimal value of (5.109).

5.16 An ezact penalty method for inequality constraints. Consider the problem

minimize  fo(z)

subject to  fi(x) <0, i=1,...,m, (5.110)

where the functions f; : R" — R are differentiable and convex. In an exact penalty
method, we solve the auxiliary problem
minimize ¢(z) = fo(x) + e maxi—1,...,m max{0, fi(x)}, (5.111)

where o > 0 is a parameter. The second term in ¢ penalizes deviations of x from feasibility.
The method is called an ezact penalty method if for sufficiently large «, solutions of the
auxiliary problem (5.111) also solve the original problem (5.110).

(a) Show that ¢ is convex.
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5.17

5.18

5.19

(b) The auxiliary problem can be expressed as
minimize  fo(z) + ay
subject to  fi(z) <y, i=1,...,m
0<y
where the variables are  and y € R. Find the Lagrange dual of this problem, and
express it in terms of the Lagrange dual function g of (5.110).
(c¢) Use the result in (b) to prove the following property. Suppose A\* is an optimal
solution of the Lagrange dual of (5.110), and that strong duality holds. If @ >
17 )\*, then any solution of the auxiliary problem (5.111) is also an optimal solution
of (5.110).
Robust linear programming with polyhedral uncertainty. Consider the robust LP
minimize Tz
subject to  sup,ep, aTz<b;, i=1,...,m,
with variable x € R", where P; = {a | Cia < d;}. The problem data are ¢ € R",
C; e R™*™ d; € R™, and b € R™. We assume the polyhedra P; are nonempty.
Show that this problem is equivalent to the LP
T

minimize ¢’z
subject to d¥z; <b;, i=1,....,m
Clzi==x, i=1,....,m

zi=0, i=1,....,m

with variables z € R™ and z; € R™, 4 = 1,...,m. Hint. Find the dual of the problem
of maximizing aiTa: over a; € P; (with variable a;).
Separating hyperplane between two polyhedra. Formulate the following problem as an LP
or an LP feasibility problem. Find a separating hyperplane that strictly separates two
polyhedra

P ={x| Az < b}, Py ={z| Cx < d},
i.e., find a vector a € R" and a scalar « such that

aTﬂc>'yf0rx€771, aTa:<7for1:€772.
You can assume that P; and P> do not intersect.
Hint. The vector a and scalar v must satisfy

. T T
inf @z >~ > sup a” =z.
z€P1 TEP2

Use LP duality to simplify the infimum and supremum in these conditions.
The sum of the largest elements of a vector. Define f: R"™ — R as

f(z) = Zwm,

where 7 is an integer between 1 and n, and x[;; > 2] > - - > x|, are the components of
x sorted in decreasing order. In other words, f(x) is the sum of the r largest elements of
x. In this problem we study the constraint

flz) <a.

As we have seen in chapter 3, page 80, this is a convex constraint, and equivalent to a set
of n!/(r!(n — r)!) linear inequalities

i, +otx, <a 1<ii<ia<- - <i.<n.

The purpose of this problem is to derive a more compact representation.
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(a) Given a vector z € R", show that f(z) is equal to the optimal value of the LP

maximize zTy
subject to 0=y =<1
1Ty =r

with y € R" as variable.

(b) Derive the dual of the LP in part (a). Show that it can be written as

minimize  rt + 17w
subject to tl1+u >z
u 0,

where the variables are ¢ € R, v € R". By duality this LP has the same optimal
value as the LP in (a), i.e., f(x). We therefore have the following result: z satisfies
f(z) < aif and only if there exist ¢t € R, u € R™ such that

rt+1Tu§a, tl4+u >z, u > 0.

These conditions form a set of 2n+1 linear inequalities in the 2n 41 variables x, u, t.

(c) As an application, we consider an extension of the classical Markowitz portfolio
optimization problem

minimize z' Xz
subject to ﬁT:v > Tmin
1Tz=1, z>0

discussed in chapter 4, page 155. The variable is the portfolio z € R"; p and X are
the mean and covariance matrix of the price change vector p.
Suppose we add a diversification constraint, requiring that no more than 80% of
the total budget can be invested in any 10% of the assets. This constraint can be
expressed as

[0.1n]

Z zp) < 0.8.

1=1

Formulate the portfolio optimization problem with diversification constraint as a

QP.
5.20 Dual of channel capacity problem. Derive a dual for the problem

minimize —c"z 4+ > yilogy
subject to Pxr =1y
z>=0, 1Tz=1,

where P € R™*™ has nonnegative elements, and its columns add up to one (i.e., P71 =
1). The variables are z € R", y € R™. (For ¢; = ZZI pij log pij, the optimal value is,
up to a factor log 2, the negative of the capacity of a discrete memoryless channel with
channel transition probability matrix P; see exercise 4.57.)

Simplify the dual problem as much as possible.
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Strong duality and Slater’s condition

5.21 A convex problem in which strong duality fails. Consider the optimization problem
minimize e "
subject to  x?/y <0

with variables z and y, and domain D = {(z,y) | y > 0}.

(a) Verify that this is a convex optimization problem. Find the optimal value.

(b) Give the Lagrange dual problem, and find the optimal solution A* and optimal value
d* of the dual problem. What is the optimal duality gap?
(c¢) Does Slater’s condition hold for this problem?
(d) What is the optimal value p*(u) of the perturbed problem
minimize e ”
subject to  2%/y <wu

as a function of u? Verify that the global sensitivity inequality
p*(u) > p*(0) — N'u
does not hold.

5.22 Geometric interpretation of duality. For each of the following optimization problems,
draw a sketch of the sets

g = {(u,t)|3x6D, fo(ﬂ?)zt, f1($):u},
A {(u,t) | 2 € D, fo(z) <t, fi(z) < ul,

give the dual problem, and solve the primal and dual problems. Is the problem convex?
Is Slater’s condition satisfied? Does strong duality hold?
The domain of the problem is R unless otherwise stated.

(a) Minimize x subject to 2 < 1.

(b) Minimize z subject to * < 0.
(¢) Minimize z subject to |z| < 0.
(d) Minimize z subject to fi(z) < 0 where

—r+2 x>1
file)=4¢ =z -1<z<1

—x—2 x< -1

(e) Minimize z* subject to —z +1 < 0.
(f) Minimize z* subject to —z 4 1 < 0 with domain D = R
5.23 Strong duality in linear programming. We prove that strong duality holds for the LP
minimize Tz
subject to Ax <b
and its dual
maximize —b7z
subject to ATz+c¢=0, z>0,

provided at least one of the problems is feasible. In other words, the only possible excep-
tion to strong duality occurs when p* = oo and d* = —oo.
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(a) Suppose p* is finite and =* is an optimal solution. (If finite, the optimal value of an
LP is attained.) Let I C {1,2,...,m} be the set of active constraints at z*:
afz* =b;, i€l afz* <b;, igl.
Show that there exists a z € R™ that satisfies
2>0, ie€l, z=0, i¢lI, Zziai—l—c:O.
iel

Show that z is dual optimal with objective value ¢’ z*.
Hint. Assume there exists no such z, i.e., —c ¢ {Ziel zia; | zz > 0}. Reduce

this to a contradiction by applying the strict separating hyperplane theorem of
example 2.20, page 49. Alternatively, you can use Farkas’ lemma (see §5.8.3).

(b) Suppose p* = oo and the dual problem is feasible. Show that d* = co. Hint. Show
that there exists a nonzero v € R™ such that ATv =0, v > 0, bTv < 0. If the dual
is feasible, it is unbounded in the direction v.

(c¢) Consider the example

minimize

. 0 -1
~ < :
subject to [ 1}3:_[ 1 ]

Formulate the dual LP, and solve the primal and dual problems. Show that p* = oo
and d* = —oo.

5.24 Weak maz-min inequality. Show that the weak max-min inequality

sup inf f(w,z) < inf sup f(w,z)
2€EZ weEW weW z€Z

always holds, with no assumptions on f: R" xR™ - R, W CR", or Z CR™.

5.25 [BLO00, page 95] Convez-concave functions and the saddle-point property. We derive con-
ditions under which the saddle-point property

sup inf f(w,z)= inf sup f(w,z) (5.112)
z2€Z weW weW zeZ

holds, where f: R" x R™ - R, W x Z C dom f, and W and Z are nonempty. We will
assume that the function

gz(w)z{ flw,z) weW

00 otherwise

is closed and convex for all z € Z, and the function

hw(z)z{ —flw,2) z€Z

%) otherwise

is closed and convex for all w € W.

(a) The righthand side of (5.112) can be expressed as p(0), where

p(u) = inf sup (f(w,z)+u” 2).
weW ze€Z

Show that p is a convex function.
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(b) Show that the conjugate of p is given by

{ —infyew f(w,v) veEZ

pi(v) = 0o otherwise.

(c) Show that the conjugate of p* is given by

p™*(u) = sup inf (f(w,z)+u”2).
z2€Z weWw

Combining this with (a), we can express the max-min equality (5.112) as p**(0) =
p(0).

(d) From exercises 3.28 and 3.39 (d), we know that p**(0) = p(0) if 0 € int domp.
Conclude that this is the case if W and Z are bounded.

(e) As another consequence of exercises 3.28 and 3.39, we have p**(0) = p(0) if 0 €
dom p and p is closed. Show that p is closed if the sublevel sets of g, are bounded.

Optimality conditions
5.26 Consider the QCQP
minimize % + 2
subject to  (z1 — 1)% + (z2 — 1)?

1
(x1 —1)? + (z2+1)2 <1

VANIVAN

with variable z € R
(a) Sketch the feasible set and level sets of the objective. Find the optimal point * and
optimal value p*.

(b) Give the KKT conditions. Do there exist Lagrange multipliers A} and A3 that prove
that z* is optimal?

(c) Derive and solve the Lagrange dual problem. Does strong duality hold?

5.27 Equality constrained least-squares. Consider the equality constrained least-squares prob-
lem

minimize || Az — b||3

subject to Gz =h
where A € R™*" with rank A = n, and G € R?*" with rank G = p.
Give the KKT conditions, and derive expressions for the primal solution z* and the dual
solution v*.

5.28 Prove (without using any linear programming code) that the optimal solution of the LP

minimize  47x1 + 93x2 + 1723 — 9324

-1 —6 1 3 . -3

-1 =2 7001 ! 5

subject to 0 3 -10 -1 G IR R

-6 —11 -2 12 s -7

1 6 -1 -3 . 4

is unique, and given by z* = (1,1,1,1).
5.29 The problem
minimize  —3z7 + 23 + 225 + 2(z1 + T2 + 3)

subject to 2% + a2 + 22 =1,

is a special case of (5.32), so strong duality holds even though the problem is not convex.
Derive the KKT conditions. Find all solutions z, v that satisfy the KKT conditions.
Which pair corresponds to the optimum?
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Derive the KKT conditions for the problem

minimize  tr X — logdet X
subject to Xs =y,

with variable X € S™ and domain S,. y € R" and s € R" are given, with sTy = 1.
Verify that the optimal solution is given by

N 1
X :I+ny - ESST.

Supporting hyperplane interpretation of KKT conditions. Consider a convex problem with
no equality constraints,

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m.

Assume that 2* € R™ and A* € R™ satisfy the KKT conditions

filz®) < 0, i=1,....m
AX> 0, i=1,...,m
MNfiGE) = 0, i=1,....m
Vio(z*)+ > " AiVfi(z*) = 0.

Show that
Vo(z*) (x —2*) >0

for all feasible . In other words the KKT conditions imply the simple optimality criterion
of §4.2.3.

Perturbation and sensitivity analysis

Optimal value of perturbed problem. Let fo, f1,..., fm : R" — R be convex. Show that
the function

p*(u,v) = inf{fo(z) | Iz € D, fi(x) <wy, i=1,...,m, Az —b=n0}

is convex. This function is the optimal cost of the perturbed problem, as a function of
the perturbations v and v (see §5.6.1).

Parametrized ¢1-norm approximation. Consider the ¢1-norm minimization problem
minimize ||Az 4+ b+ ed|1

with variable z € R3, and

-2 7 1 —4 —10

-5 -1 3 3 —13

-7 3 =5 9 —27

A= -1 4 -4 |’ b= 0|’ d= -10
1 5 5 —11 -7

2 -5 -1 5 14

We denote by p*(€) the optimal value as a function of e.

(a) Suppose € = 0. Prove that * = 1 is optimal. Are there any other optimal points?

(b) Show that p*(e) is affine on an interval that includes ¢ = 0.
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5.34 Consider the pair of primal and dual LPs

minimize (¢ + ed)”x
subject to Az <b+e€f

and
maximize —(b+ef)Tz
subject to ATz 4+ c+ed =0
z>=0
where
-4 12 -2 1 8 6
—17 12 7 11 13 15
A= 1 0 =6 11|, b=]| —-a/|, f=1-13],
3 3 22 -1 27 48
—11 2 -1 =8 —18 8

¢ = (49,-34,-50,-5), d = (3,8,21,25), and ¢ is a parameter.

(a) Prove that z* = (1,1,1,1) is optimal when € = 0, by constructing a dual optimal
point z* that has the same objective value as z*. Are there any other primal or dual
optimal solutions?

(b) Give an explicit expression for the optimal value p*(e) as a function of ¢ on an
interval that contains € = 0. Specify the interval on which your expression is valid.
Also give explicit expressions for the primal solution z*(e) and the dual solution
z*(€) as a function of €, on the same interval.

Hint. First calculate z*(€) and z*(¢), assuming that the primal and dual constraints
that are active at the optimum for € = 0, remain active at the optimum for values
of € around 0. Then verify that this assumption is correct.

5.35 Sensitivity analysis for GPs. Consider a GP

minimize  fo(x)
subject to  fi(z) <1, i=1,...,m
hi(z) =1, i=1,...,p,

al

where fo, ..., fm are posynomials, hi, ..., h, are monomials, and the domain of the prob-
lem is R%} . We define the perturbed GP as

minimize  fo(x)

subject to  fi(z) <e*, i=1,...,m
— eYi -

and we denote the optimal value of the perturbed GP as p*(u,v). We can think of u; and
v; as relative, or fractional, perturbations of the constraints. For example, u; = —0.01
corresponds to tightening the first inequality constraint by (approximately) 1%.

Let A* and v* be optimal dual variables for the convex form GP

minimize  log fo(y)
subject to log fi(y) <0, i=1,...,m
loghi(y) =0, i=1,...,p,

with variables y; = log z;. Assuming that p*(u,v) is differentiable at uw = 0, v = 0, relate
A* and v* to the derivatives of p*(u,v) at w = 0, v = 0. Justify the statement “Relaxing
the ith constraint by « percent will give an improvement in the objective of around a\]
percent, for o small.”
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Theorems of alternatives

Alternatives for linear equalities. Consider the linear equations Az = b, where A € R™*"™.
From linear algebra we know that this equation has a solution if and only b € R(A), which
occurs if and only if b L N (AT). In other words, Az = b has a solution if and only if
there exists no y € R™ such that ATy =0 and b7y # 0.

Derive this result from the theorems of alternatives in §5.8.2.

[BT97] Ezistence of equilibrium distribution in finite state Markov chain. Let P € R™*"
be a matrix that satisfies

pi; >0, i,j=1,...,n, pPf1 =1,

i.e., the coefficients are nonnegative and the columns sum to one. Use Farkas’ lemma to
prove there exists a y € R"™ such that

Py=y, y=0, 1Ty=1

(We can interpret y as an equilibrium distribution of the Markov chain with n states and
transition probability matrix P.)

[BT97] Option pricing. ~We apply the results of example 5.10, page 263, to a simple
problem with three assets: a riskless asset with fixed return r > 1 over the investment
period of interest (for example, a bond), a stock, and an option on the stock. The option
gives us the right to purchase the stock at the end of the period, for a predetermined
price K.

We consider two scenarios. In the first scenario, the price of the stock goes up from
S at the beginning of the period, to Su at the end of the period, where v > r. In this
scenario, we exercise the option only if Su > K, in which case we make a profit of Su— K.
Otherwise, we do not exercise the option, and make zero profit. The value of the option
at the end of the period, in the first scenario, is therefore max{0, Su — K}.

In the second scenario, the price of the stock goes down from S to Sd, where d < 1. The
value at the end of the period is max{0,Sd — K'}.

In the notation of example 5.10,

r uwS max{0,Su— K}

V= dS max{0,9d—K} | P=h

p2=25, ps=C,
where C' is the price of the option.

Show that for given r, S, K, u, d, the option price C' is uniquely determined by the
no-arbitrage condition. In other words, the market for the option is complete.

Generalized inequalities

SDP relazations of two-way partitioning problem. We consider the two-way partitioning
problem (5.7), described on page 219,

RV T
minimize Wz
subject to 2?2 =1, i=1,...,n, (5.113)
with variable € R™. The Lagrange dual of this (nonconvex) problem is given by the
SDP

maximize —1Tv

subject to W + diag(v) = 0

with variable v € R™. The optimal value of this SDP gives a lower bound on the optimal
value of the partitioning problem (5.113). In this exercise we derive another SDP that
gives a lower bound on the optimal value of the two-way partitioning problem, and explore
the connection between the two SDPs.

(5.114)
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(a)

Two-way partitioning problem in matriz form. Show that the two-way partitioning
problem can be cast as

minimize  tr(WX)
subject to X =0, rankX =1
X“':L z':l,...,n,

with variable X € S". Hint. Show that if X is feasible, then it has the form
X = zz”, where x € R™ satisfies z; € {—1,1} (and vice versa).

SDP relazation of two-way partitioning problem. Using the formulation in part (a),
we can form the relaxation

minimize  tr(WX)
subject to X >0 (5.115)
X“':l, z':l,...,n,

with variable X € S™. This problem is an SDP, and therefore can be solved effi-
ciently. Explain why its optimal value gives a lower bound on the optimal value of
the two-way partitioning problem (5.113). What can you say if an optimal point
X* for this SDP has rank one?

We now have two SDPs that give a lower bound on the optimal value of the two-way
partitioning problem (5.113): the SDP relaxation (5.115) found in part (b), and the
Lagrange dual of the two-way partitioning problem, given in (5.114). What is the
relation between the two SDPs? What can you say about the lower bounds found
by them? Hint: Relate the two SDPs via duality.

5.40 E-optimal experiment design. A variation on the two optimal experiment design problems

5.41

of exercise 5.10 is the E-optimal design problem

minimize  Amax (ELI l’i’UiUz‘T) -
subject to x>0, 1Tz =1.

(See also §7.5.) Derive a dual for this problem, by first reformulating it as

minimize 1/t
subject to Zle ool =t
z>=0, 1Tz=1,

with variables t € R, * € R? and domain R14 x R?, and applying Lagrange duality.
Simplify the dual problem as much as you can.

Dual of fastest mixing Markov chain problem. On page 174, we encountered the SDP

minimize ¢

subject to —tI < P — (1/n)117 <¢I
P1=1
P; >0, 4,7=1,...,n
Pij =0 for (Z,j) Q 5,

with variables t € R, P € S™.
Show that the dual of this problem can be expressed as

maximize 17z — (1/n)17Y1
subject to  ||Y |2« <1
(zi +25) <Y for (i,5) €€

with variables z € R™ and Y € S”. The norm || - ||2« is the dual of the spectral norm
on 8™: [[Y]l2« = > [Ai(Y)], the sum of the absolute values of the eigenvalues of Y.
(See §A.1.6, page 637.)
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Lagrange dual of conic form problem in inequality form. Find the Lagrange dual problem
of the conic form problem in inequality form

minimize ¢’z

subject to Az <k b

where A € R™*", b € R, and K is a proper cone in R™. Make any implicit equality
constraints explicit.

Dual of SOCP. Show that the dual of the SOCP
minimize  fTx
subject to || Aix + bil|2 SCZ-TJJ—Fdi, t=1,...,m,
with variables x € R", can be expressed as
maximize Z:’;l(b?ui —div;)
subject to ZZI(AiTui —cv;))+f=0
HUZ'HQSUZ', i:1,...,m,
with variables u; € R™,v; € R,%i=1,...,m. The problem data are f € R", A; € R™"*",
b; ERn'i, ¢ € R and d; ER,iI l,...,m.
Derive the dual in the following two ways.
(a) Introduce new variables y; € R™ and ¢t; € R and equalities y; = A;x + b;, t; =
¢TIz 4 d;, and derive the Lagrange dual.

(b) Start from the conic formulation of the SOCP and use the conic dual. Use the fact
that the second-order cone is self-dual.

Strong alternatives for nonstrict LMIs. In example 5.14, page 270, we mentioned that
the system
Z = 0, tr(GZ) > 0, tr(F;Z2) =0, i=1,...,n, (5.116)
is a strong alternative for the nonstrict LMI
Flx)=x1Fi+- -+ x,F, + G =0, (5.117)

if the matrices F; satisfy

n

ZvlFi =0 = Zn:vF =0. (5.118)

i=1 i=1

In this exercise we prove this result, and give an example to illustrate that the systems
are not always strong alternatives.

(a) Suppose (5.118) holds, and that the optimal value of the auxiliary SDP
minimize s
subject to  F(z) =X sI

is positive. Show that the optimal value is attained. If follows from the discussion
in §5.9.4 that the systems (5.117) and (5.116) are strong alternatives.

Hint. The proof simplifies if you assume, without loss of generality, that the matrices
Fi, ..., F, are independent, so (5.118) may be replaced by Z;;l viF; = 0=v=0.

(b) Take n =1, and
0 1 0 0
G_{lo}’ Fl_[o1]'

Show that (5.117) and (5.116) are both infeasible.
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Chapter 6

Approximation and fitting

Norm approximation

Basic norm approximation problem

The simplest norm approximation problem is an unconstrained problem of the form
minimize ||Az — b|| (6.1)

where A € R™*" and b € R" are problem data, z € R" is the variable, and |- || is
a norm on R™. A solution of the norm approximation problem is sometimes called
an approzimate solution of Ax ~ b, in the norm || - ||. The vector

r=Ax—b

is called the residual for the problem; its components are sometimes called the
individual residuals associated with z.

The norm approximation problem (6.1) is a convex problem, and is solvable,
i.e., there is always at least one optimal solution. Its optimal value is zero if
and only if b € R(A); the problem is more interesting and useful, however, when
b & R(A). We can assume without loss of generality that the columns of A are
independent; in particular, that m > n. When m = n the optimal point is simply
A~1b, so we can assume that m > n.

Approximation interpretation

By expressing Az as
Ax =z101 + -+ + Thay,

where ay,...,a, € R™ are the columns of A, we see that the goal of the norm
approximation problem is to fit or approximate the vector b by a linear combination
of the columns of A, as closely as possible, with deviation measured in the norm
-1

The approximation problem is also called the regression problem. In this context
the vectors aq,...,a, are called the regressors, and the vector x1ay + - -+ + xpan,
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where z is an optimal solution of the problem, is called the regression of b (onto
the regressors).

Estimation interpretation

A closely related interpretation of the norm approximation problem arises in the
problem of estimating a parameter vector on the basis of an imperfect linear vector
measurement. We consider a linear measurement model

y=Ax+ v,

where y € R is a vector measurement, x € R" is a vector of parameters to be
estimated, and v € R™ is some measurement error that is unknown, but presumed
to be small (in the norm || - ||). The estimation problem is to make a sensible guess
as to what z is, given y.

If we guess that x has the value z, then we are implicitly making the guess that
v has the value y — A#. Assuming that smaller values of v (measured by || - ||) are
more plausible than larger values, the most plausible guess for x is
Az —y]|.

Z = argmin, |
(These ideas can be expressed more formally in a statistical framework; see chap-
ter 7.)

Geometric interpretation

We consider the subspace A = R(A) C R™, and a point b € R™. A projection of
the point b onto the subspace A, in the norm || - ||, is any point in A that is closest
to b, i.e., any optimal point for the problem

minimize  |ju — b||
subject to u € A.

Parametrizing an arbitrary element of R(A) as u = Az, we see that solving the
norm approximation problem (6.1) is equivalent to computing a projection of b
onto A.

Design interpretation

We can interpret the norm approximation problem (6.1) as a problem of optimal
design. The n variables x1,...,x, are design variables whose values are to be
determined. The vector y = Ax gives a vector of m results, which we assume to
be linear functions of the design variables x. The vector b is a vector of target or
desired results. The goal is to choose a vector of design variables that achieves, as
closely as possible, the desired results, i.e., Az = b. We can interpret the residual
vector r as the deviation between the actual results (i.e., Az) and the desired
or target results (i.e., b). If we measure the quality of a design by the norm of
the deviation between the actual results and the desired results, then the norm
approximation problem (6.1) is the problem of finding the best design.



6.1 Norm approximation 293

Weighted norm approximation problems

An extension of the norm approximation problem is the weighted norm approxima-
tion problem
minimize ||W(Az — b)||

where the problem data W € R™*™ is called the weighting matriz. The weight-
ing matrix is often diagonal, in which case it gives different relative emphasis to
different components of the residual vector r = Ax — b.

The weighted norm problem can be considered as a norm approximation prob-
lem with norm ||-||, and data A =WA, b= Wb, and therefore treated as a standard
norm approximation problem (6.1). Alternatively, the weighted norm approxima-
tion problem can be considered a norm approximation problem with data A and
b, and the W -weighted norm defined by

Izllw = W=

(assuming here that W is nonsingular).

Least-squares approximation

The most common norm approximation problem involves the Euclidean or /-
norm. By squaring the objective, we obtain an equivalent problem which is called
the least-squares approrimation problem,

minimize ||Ax —b||3 =rf+ 73+ +12,

where the objective is the sum of squares of the residuals. This problem can be
solved analytically by expressing the objective as the convex quadratic function

f(z) = 2T AT Az — 207 Az + b7,
A point z minimizes f if and only if
Vi(z) =247 Az — 2ATh = 0,
i.e., if and only if x satisfies the so-called normal equations
AT Az = AT,
which always have a solution. Since we assume the columns of A are independent,
the least-squares approximation problem has the unique solution z = (AT A)~1ATb.
Chebyshev or minimax approximation
When the /.,-norm is used, the norm approximation problem
minimize ||Az — b||oo = max{|r1],..., |rm|}

is called the Chebyshev approzximation problem, or minimaz approzimation problem,
since we are to minimize the maximum (absolute value) residual. The Chebyshev
approximation problem can be cast as an LP

minimize ¢

subject to —t1 < Az —b <11,
with variables z € R" and t € R.
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6.1.2

Sum of absolute residuals approximation

When the ¢1-norm is used, the norm approximation problem
minimize |[Ax —b||1 = |r1| + - + |7

is called the sum of (absolute) residuals approximation problem, or, in the context
of estimation, a robust estimator (for reasons that will be clear soon). Like the
Chebyshev approximation problem, the ¢;-norm approximation problem can be
cast as an LP

minimize 17t

subject to —t < Ax —b <t

with variables z € R"™ and t € R™.

Penalty function approximation
In £,-norm approximation, for 1 < p < oo, the objective is
(Irf” = )7
As in least-squares problems, we can consider the equivalent problem with objective
AP+ b,

which is a separable and symmetric function of the residuals. In particular, the
objective depends only on the amplitude distribution of the residuals, i.e., the
residuals in sorted order.

We will consider a useful generalization of the £,-norm approximation problem,
in which the objective depends only on the amplitude distribution of the residuals.
The penalty function approrimation problem has the form

minimize  ¢(r1) + -+ + d(rm) (6.2)
subject to r = Ax — b, '
where ¢ : R — R is called the (residual) penalty function. We assume that ¢ is
convex, so the penalty function approximation problem is a convex optimization
problem. In many cases, the penalty function ¢ is symmetric, nonnegative, and
satisfies ¢(0) = 0, but we will not use these properties in our analysis.

Interpretation

We can interpret the penalty function approximation problem (6.2) as follows. For
the choice x, we obtain the approximation Az of b, which has the associated resid-
ual vector r. A penalty function assesses a cost or penalty for each component
of residual, given by ¢(r;); the total penalty is the sum of the penalties for each
residual, i.e., ¢(r1) + -+ + ¢(ry,). Different choices of x lead to different resulting
residuals, and therefore, different total penalties. In the penalty function approxi-
mation problem, we minimize the total penalty incurred by the residuals.
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Figure 6.1 Some common penalty functions: the quadratic penalty function
o(u) = u?, the deadzone-linear penalty function with deadzone width a =
1/4, and the log barrier penalty function with limit a = 1.

Example 6.1 Some common penalty functions and associated approximation problems.

e By taking ¢(u) = |u|?, where p > 1, the penalty function approximation prob-
lem is equivalent to the ¢,-norm approximation problem. In particular, the
quadratic penalty function ¢(u) = u? yields least-squares or Euclidean norm
approximation, and the absolute value penalty function ¢(u) = |u| yields £;-
norm approximation.

e The deadzone-linear penalty function (with deadzone width a > 0) is given by

qb(u)—{ 0 lul < a

lul —a |u] > a.
The deadzone-linear function assesses no penalty for residuals smaller than a.
e The log barrier penalty function (with limit @ > 0) has the form

W)_{ —a®log(1 — (u/a)?) |u|<a

s) lu| > a.

The log barrier penalty function assesses an infinite penalty for residuals larger
than a.

A deadzone-linear, log barrier, and quadratic penalty function are plotted in fig-
ure 6.1. Note that the log barrier function is very close to the quadratic penalty for
|u/al < 0.25 (see exercise 6.1).

Scaling the penalty function by a positive number does not affect the solution of
the penalty function approximation problem, since this merely scales the objective
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function. But the shape of the penalty function has a large effect on the solution of
the penalty function approximation problem. Roughly speaking, ¢(u) is a measure
of our dislike of a residual of value u. If ¢ is very small (or even zero) for small
values of u, it means we care very little (or not at all) if residuals have these values.
If ¢(u) grows rapidly as u becomes large, it means we have a strong dislike for
large residuals; if ¢ becomes infinite outside some interval, it means that residuals
outside the interval are unacceptable. This simple interpretation gives insight into
the solution of a penalty function approximation problem, as well as guidelines for
choosing a penalty function.

As an example, let us compare ¢1-norm and fs-norm approximation, associ-
ated with the penalty functions ¢1(u) = |u| and ¢o(u) = u?, respectively. For
|u| = 1, the two penalty functions assign the same penalty. For small u« we have
o1 (u) > ¢a(u), so ¢1-norm approximation puts relatively larger emphasis on small
residuals compared to ¢3-norm approximation. For large u we have ¢a(u) > ¢1(u),
so /1-norm approximation puts less weight on large residuals, compared to f2-norm
approximation. This difference in relative weightings for small and large residuals
is reflected in the solutions of the associated approximation problems. The ampli-
tude distribution of the optimal residual for the ¢;-norm approximation problem
will tend to have more zero and very small residuals, compared to the fo-norm ap-
proximation solution. In contrast, the £5-norm solution will tend to have relatively
fewer large residuals (since large residuals incur a much larger penalty in £3-norm
approximation than in ¢;-norm approximation).

Example

An example will illustrate these ideas. We take a matrix 4 € R"%°*3 and vector
be R (chosen at random, but the results are typical), and compute the ¢;-norm
and fo-norm approximate solutions of Ax =~ b, as well as the penalty function
approximations with a deadzone-linear penalty (with ¢ = 0.5) and log barrier
penalty (with a = 1). Figure 6.2 shows the four associated penalty functions,
and the amplitude distributions of the optimal residuals for these four penalty
approximations. From the plots of the penalty functions we note that

e The /1-norm penalty puts the most weight on small residuals and the least
weight on large residuals.

e The /5-norm penalty puts very small weight on small residuals, but strong
weight on large residuals.

e The deadzone-linear penalty function puts no weight on residuals smaller
than 0.5, and relatively little weight on large residuals.

e The log barrier penalty puts weight very much like the ¢5-norm penalty for
small residuals, but puts very strong weight on residuals larger than around
0.8, and infinite weight on residuals larger than 1.

Several features are clear from the amplitude distributions:

e For the ¢1-optimal solution, many residuals are either zero or very small. The
{1-optimal solution also has relatively more large residuals.
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Figure 6.2 Histogram of residual amplitudes for four penalty functions, with
the (scaled) penalty functions also shown for reference. For the log barrier
plot, the quadratic penalty is also shown, in dashed curve.
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Figure 6.3 A (nonconvex) penalty function that assesses a fixed penalty to
residuals larger than a threshold (which in this example is one): ¢(u) = u?
if Jul <1 and ¢(u) = 1if |u] > 1. As a result, penalty approximation with
this function would be relatively insensitive to outliers.

e The /5-norm approximation has many modest residuals, and relatively few
larger ones.

e For the deadzone-linear penalty, we see that many residuals have the value
+0.5, right at the edge of the ‘free’ zone, for which no penalty is assessed.

e For the log barrier penalty, we see that no residuals have a magnitude larger
than 1, but otherwise the residual distribution is similar to the residual dis-
tribution for /2-norm approximation.

Sensitivity to outliers or large errors

In the estimation or regression context, an outlier is a measurement y; = aiTac +v;
for which the noise v; is relatively large. This is often associated with faulty data
or a flawed measurement. When outliers occur, any estimate of x will be associated
with a residual vector with some large components. Ideally we would like to guess
which measurements are outliers, and either remove them from the estimation
process or greatly lower their weight in forming the estimate. (We cannot, however,
assign zero penalty for very large residuals, because then the optimal point would
likely make all residuals large, which yields a total penalty of zero.) This could be
accomplished using penalty function approximation, with a penalty function such

as
2
o ={ 4 1S (63)

shown in figure 6.3. This penalty function agrees with least-squares for any residual
smaller than M, but puts a fixed weight on any residual larger than M, no matter
how much larger it is. In other words, residuals larger than M are ignored; they
are assumed to be associated with outliers or bad data. Unfortunately, the penalty
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Figure 6.4 The solid line is the robust least-squares or Huber penalty func-
tion ¢nub, with M = 1. For |u| < M it is quadratic, and for |u| > M it
grows linearly.

function (6.3) is not convex, and the associated penalty function approximation
problem becomes a hard combinatorial optimization problem.

The sensitivity of a penalty function based estimation method to outliers de-
pends on the (relative) value of the penalty function for large residuals. If we
restrict ourselves to convex penalty functions (which result in convex optimization
problems), the ones that are least sensitive are those for which ¢(u) grows linearly,
i.e., like |ul, for large u. Penalty functions with this property are sometimes called
robust, since the associated penalty function approximation methods are much less
sensitive to outliers or large errors than, for example, least-squares.

One obvious example of a robust penalty function is ¢(u) = |u|, corresponding
to ¢1-norm approximation. Another example is the robust least-squares or Huber
penalty function, given by

e ful < M
G (1) = { M@Ju| = M) |u] > M, (6-4)
shown in figure 6.4. This penalty function agrees with the least-squares penalty
function for residuals smaller than M, and then reverts to £;-like linear growth for
larger residuals. The Huber penalty function can be considered a convex approx-
imation of the outlier penalty function (6.3), in the following sense: They agree
for |u| < M, and for |u| > M, the Huber penalty function is the convex function
closest to the outlier penalty function (6.3).

Example 6.2 Robust regression. Figure 6.5 shows 42 points (¢;,y;) in a plane, with
two obvious outliers (one at the upper left, and one at lower right). The dashed line
shows the least-squares approximation of the points by a straight line f(t) = o+ S3¢.
The coefficients « and 8 are obtained by solving the least-squares problem

minimize Zfil(yl —a—Bt)?,
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Figure 6.5 The 42 circles show points that can be well approximated by
an affine function, except for the two outliers at upper left and lower right.
The dashed line is the least-squares fit of a straight line f(¢) = o + Bt
to the points, and is rotated away from the main locus of points, toward
the outliers. The solid line shows the robust least-squares fit, obtained by
minimizing Huber’s penalty function with M = 1. This gives a far better fit
to the non-outlier data.

with variables a and . The least-squares approximation is clearly rotated away from
the main locus of the points, toward the two outliers.

The solid line shows the robust least-squares approximation, obtained by minimizing
the Huber penalty function

minimize Y12, Ghub(yi — o — L),

with M = 1. This approximation is far less affected by the outliers.

Since ¢;-norm approximation is among the (convex) penalty function approxi-
mation methods that are most robust to outliers, £1-norm approximation is some-
times called robust estimation or robust regression. The robustness property of
{1-norm estimation can also be understood in a statistical framework; see page 353.

Small residuals and /;-norm approximation

We can also focus on small residuals. Least-squares approximation puts very small
weight on small residuals, since ¢(u) = u? is very small when v is small. Penalty
functions such as the deadzone-linear penalty function put zero weight on small
residuals. For penalty functions that are very small for small residuals, we expect
the optimal residuals to be small, but not very small. Roughly speaking, there is
little or no incentive to drive small residuals smaller.

In contrast, penalty functions that put relatively large weight on small residuals,
such as ¢(u) = |u|, corresponding to ¢1-norm approximation, tend to produce
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optimal residuals many of which are very small, or even exactly zero. This means
that in /;-norm approximation, we typically find that many of the equations are
satisfied exactly, i.e., we have a] x = b; for many i. This phenomenon can be seen
in figure 6.2.

Approximation with constraints

It is possible to add constraints to the basic norm approximation problem (6.1).
When these constraints are convex, the resulting problem is convex. Constraints
arise for a variety of reasons.

e In an approximation problem, constraints can be used to rule out certain un-
acceptable approximations of the vector b, or to ensure that the approximator
Ax satisfies certain properties.

e In an estimation problem, the constraints arise as prior knowledge of the
vector x to be estimated, or from prior knowledge of the estimation error v.

e Constraints arise in a geometric setting in determining the projection of a
point b on a set more complicated than a subspace, for example, a cone or
polyhedron.

Some examples will make these clear.

Nonnegativity constraints on variables

We can add the constraint z > 0 to the basic norm approximation problem:

minimize || Az — b||
subject to x > 0.

In an estimation setting, nonnegativity constraints arise when we estimate a vector
z of parameters known to be nonnegative, e.g., powers, intensities, or rates. The
geometric interpretation is that we are determining the projection of a vector b onto
the cone generated by the columns of A. We can also interpret this problem as
approximating b using a nonnegative linear (i.e., conic) combination of the columns

of A.
Variable bounds
Here we add the constraint [ < x < u, where [, u € R™ are problem parameters:

minimize  ||Az — b||
subject to | <Xz <X u.

In an estimation setting, variable bounds arise as prior knowledge of intervals in
which each variable lies. The geometric interpretation is that we are determining
the projection of a vector b onto the image of a box under the linear mapping
induced by A.



302

6 Approximation and fitting

6.2

Probability distribution
We can impose the constraint that x satisfy z = 0, 172 = 1:

minimize || Az — b||
subject to x>0, 17z =1.

This would arise in the estimation of proportions or relative frequencies, which are
nonnegative and sum to one. It can also be interpreted as approximating b by a
convex combination of the columns of A. (We will have much more to say about
estimating probabilities in §7.2.)

Norm ball constraint

We can add to the basic norm approximation problem the constraint that x lie in
a norm ball:

minimize || Az — b||

subject to ||z — x| < d,
where x¢ and d are problem parameters. Such a constraint can be added for several
reasons.

e In an estimation setting, xg is a prior guess of what the parameter x is, and d
is the maximum plausible deviation of our estimate from our prior guess. Our
estimate of the parameter x is the value & which best matches the measured
data (i.e., minimizes ||Az — b||) among all plausible candidates (i.e., z that
satisfy ||z — xo|| < d).

e The constraint || —xzo|| < d can denote a trust region. Here the linear relation
y = Az is only an approximation of some nonlinear relation y = f(z) that is
valid when z is near some point xg, specifically || — 2| < d. The problem
is to minimize || Az — b|| but only over those x for which the model y = Az is
trusted.

These ideas also come up in the context of regularization; see §6.3.2.

Least-norm problems

The basic least-norm problem has the form

minimize  ||z||

subject to Az =0 (6.5)

where the data are A € R™*" and b € R™, the variable is z € R", and || - || is a
norm on R". A solution of the problem, which always exists if the linear equations
Az = b have a solution, is called a least-norm solution of Ax = b. The least-norm
problem is, of course, a convex optimization problem.

We can assume without loss of generality that the rows of A are independent, so
m < n. When m = n, the only feasible point is # = A~'b; the least-norm problem
is interesting only when m < n, i.e., when the equation Az = b is underdetermined.
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Reformulation as norm approximation problem

The least-norm problem (6.5) can be formulated as a norm approximation problem
by eliminating the equality constraint. Let zy be any solution of Ax = b, and let
Z € R™* be a matrix whose columns are a basis for the nullspace of A. The
general solution of Az = b can then be expressed as xg + Zu where u € R”. The
least-norm problem (6.5) can be expressed as

minimize ||zg + Zul|,

with variable v € R, which is a norm approximation problem. In particular,
our analysis and discussion of norm approximation problems applies to least-norm
problems as well (when interpreted correctly).

Control or design interpretation

We can interpret the least-norm problem (6.5) as a problem of optimal design or
optimal control. The n variables x1,...,z, are design variables whose values are
to be determined. In a control setting, the variables z1,...,z, represent inputs,
whose values we are to choose. The vector y = Ax gives m attributes or results of
the design x, which we assume to be linear functions of the design variables x. The
m < n equations Ax = b represent m specifications or requirements on the design.
Since m < n, the design is underspecified; there are n — m degrees of freedom in
the design (assuming A is rank m).

Among all the designs that satisfy the specifications, the least-norm problem
chooses the smallest design, as measured by the norm || - ||. This can be thought of
as the most efficient design, in the sense that it achieves the specifications Ax = b,
with the smallest possible x.

Estimation interpretation

We assume that z is a vector of parameters to be estimated. We have m < n
perfect (noise free) linear measurements, given by Az = b. Since we have fewer
measurements than parameters to estimate, our measurements do not completely
determine x. Any parameter vector x that satisfies Ax = b is consistent with our
measurements.

To make a good guess about what z is, without taking further measurements,
we must use prior information. Suppose our prior information, or assumption, is
that z is more likely to be small (as measured by || - ||) than large. The least-norm
problem chooses as our estimate of the parameter vector = the one that is smallest
(hence, most plausible) among all parameter vectors that are consistent with the
measurements Az = b. (For a statistical interpretation of the least-norm problem,
see page 359.)

Geometric interpretation

We can also give a simple geometric interpretation of the least-norm problem (6.5).
The feasible set {x | Az = b} is affine, and the objective is the distance (measured
by the norm || - ||) between z and the point 0. The least-norm problem finds the
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point in the affine set with minimum distance to 0, i.e., it determines the projection
of the point 0 on the affine set {z | Ax = b}.

Least-squares solution of linear equations

The most common least-norm problem involves the Euclidean or f;-norm. By
squaring the objective we obtain the equivalent problem

minimize  ||x||3
subject to Ax = b,

the unique solution of which is called the least-squares solution of the equations
Az = b. Like the least-squares approximation problem, this problem can be solved
analytically. Introducing the dual variable v € R™, the optimality conditions are

20* + ATy =0, Ax* = b,

which is a pair of linear equations, and readily solved. From the first equation
we obtain 2* = —(1/2) ATv*; substituting this into the second equation we obtain
—(1/2)AATv* = b, and conclude

v* = —2(AAT) b, 2* = AT(AAT) .

(Since rank A = m < n, the matrix AAT is invertible.)

Least-penalty problems

A useful variation on the least-norm problem (6.5) is the least-penalty problem

minimize  @¢(x1) + - - + P(ay,)

subject to Az = b, (6.6)

where ¢ : R — R is convex, nonnegative, and satisfies ¢(0) = 0. The penalty
function value ¢(u) quantifies our dislike of a component of x having value wu;
the least-penalty problem then finds x that has least total penalty, subject to the
constraint Ax = b.

All of the discussion and interpretation of penalty functions in penalty function
approximation can be transposed to the least-penalty problem, by substituting
the amplitude distribution of x (in the least-penalty problem) for the amplitude
distribution of the residual r (in the penalty approximation problem).

Sparse solutions via least /;-norm

Recall from the discussion on page 300 that ¢;-norm approximation gives relatively
large weight to small residuals, and therefore results in many optimal residuals
small, or even zero. A similar effect occurs in the least-norm context. The least
£1-norm problem,

minimize ||z}

subject to Az = b,
tends to produce a solution x with a large number of components equal to zero.

In other words, the least ¢;-norm problem tends to produce sparse solutions of
Az = b, often with m nonzero components.
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It is easy to find solutions of Ax = b that have only m nonzero components.
Choose any set of m indices (out of 1,...,n) which are to be the nonzero com-
ponents of z. The equation Az = b reduces to A7 = b, where A is the m x m
submatrix of A obtained by selecting only the chosen columns, and & € R™ is the
subvector of z containing the m selected components. If A is nonsingular, then
we can take & = A~'b, which gives a feasible solution x with m or less nonzero
components. If A s singular and b & R(A), the equation A% = b is unsolvable,
which means there is no feasible x with the chosen set of nonzero components. If
A is singular and b € R(A), there is a feasible solution with fewer than m nonzero
components.

This approach can be used to find the smallest x with m (or fewer) nonzero
entries, but in general requires examining and comparing all n!/(m!(n—m)!) choices
of m nonzero coefficients of the n coefficients in z. Solving the least ¢;-norm
problem, on the other hand, gives a good heuristic for finding a sparse, and small,
solution of Az =b.

Regularized approximation

Bi-criterion formulation

In the basic form of regularized approximation, the goal is to find a vector x that
is small (if possible), and also makes the residual Az — b small. This is naturally
described as a (convex) vector optimization problem with two objectives, || Az — b||
and ||z|:

minimize (w.r.t. R7) (|[Az —b||,|z]). (6.7)

The two norms can be different: the first, used to measure the size of the residual,
is on R™; the second, used to measure the size of z, is on R".

The optimal trade-off between the two objectives can be found using several
methods. The optimal trade-off curve of ||Az — b|| versus ||z||, which shows how
large one of the objectives must be made to have the other one small, can then be
plotted. One endpoint of the optimal trade-off curve between ||Az — b|| and ||z||
is easy to describe. The minimum value of ||z|| is zero, and is achieved only when
z = 0. For this value of z, the residual norm has the value ||b]|.

The other endpoint of the trade-off curve is more complicated to describe. Let
C' denote the set of minimizers of || Az — b|| (with no constraint on ||z||). Then any
minimum norm point in C' is Pareto optimal, corresponding to the other endpoint
of the trade-off curve. In other words, Pareto optimal points at this endpoint are
given by minimum norm minimizers of | Az —b||. If both norms are Euclidean, this
Pareto optimal point is unique, and given by @ = Ab, where At is the pseudo-
inverse of A. (See §4.7.6, page 184, and §A.5.4.)
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6.3.2

Regularization

Regularization is a common scalarization method used to solve the bi-criterion
problem (6.7). One form of regularization is to minimize the weighted sum of the
objectives:

minimize ||Az — b|| + ||z, (6.8)

where v > 0 is a problem parameter. As  varies over (0,00), the solution of (6.8)
traces out the optimal trade-off curve.

Another common method of regularization, especially when the Euclidean norm
is used, is to minimize the weighted sum of squared norms, i.e.,

minimize ||Az — b||? + §||z||?, (6.9)

for a variety of values of § > 0.

These regularized approximation problems each solve the bi-criterion problem
of making both ||Az — b|| and ||z| small, by adding an extra term or penalty
associated with the norm of z.

Interpretations

Regularization is used in several contexts. In an estimation setting, the extra term
penalizing large ||z|| can be interpreted as our prior knowledge that ||z is not too
large. In an optimal design setting, the extra term adds the cost of using large
values of the design variables to the cost of missing the target specifications.

The constraint that ||z|| be small can also reflect a modeling issue. It might be,
for example, that y = Az is only a good approximation of the true relationship
y = f(z) between x and y. In order to have f(z) = b, we want Ax ~ b, and also
need z small in order to ensure that f(z) = Ax.

We will see in §6.4.1 and §6.4.2 that regularization can be used to take into
account variation in the matrix A. Roughly speaking, a large x is one for which
variation in A causes large variation in Az, and hence should be avoided.

Regularization is also used when the matrix A is square, and the goal is to
solve the linear equations Ax = b. In cases where A is poorly conditioned, or even
singular, regularization gives a compromise between solving the equations (i.e.,
making ||Az — b|| zero) and keeping x of reasonable size.

Regularization comes up in a statistical setting; see §7.1.2.

Tikhonov regularization

The most common form of regularization is based on (6.9), with Euclidean norms,
which results in a (convex) quadratic optimization problem:

minimize [|Ax — b||3 + §||z||3 = 2T (AT A+ 61)z — 2bT Az + bTb. (6.10)
This Tikhonov reqularization problem has the analytical solution
= (ATA+ 50" ATb.

Since AT A+ 61 = 0 for any 6 > 0, the Tikhonov regularized least-squares solution
requires no rank (or dimension) assumptions on the matrix A.
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Smoothing regularization

The idea of regularization, i.e., adding to the objective a term that penalizes large
x, can be extended in several ways. In one useful extension we add a regularization
term of the form ||Dz||, in place of ||z|. In many applications, the matrix D
represents an approximate differentiation or second-order differentiation operator,
so || Dz|| represents a measure of the variation or smoothness of z.

For example, suppose that the vector x € R"™ represents the value of some
continuous physical parameter, say, temperature, along the interval [0,1]: x; is
the temperature at the point i/n. A simple approximation of the gradient or
first derivative of the parameter near i¢/n is given by n(x;+1 — x;), and a simple
approximation of its second derivative is given by the second difference

n (n(miﬂ — 331) - ’I’L(a?l — xi_l)) = n2(xi+1 —2x; + xi_l).

If A is the (tridiagonal, Toeplitz) matrix

1 -2 1 0 -~ 0 0 0 0]

0 1 -2 r .- 0 0 00

o o 1 -2 .. 0 0 00
A=n|topon Lo | ert

o o o o0 - -2 1 00

o o o o0 -- 1 -2 10

0o 0 0 0 - 0 1 -2 1|

then Az represents an approximation of the second derivative of the parameter, so
|Az||3 represents a measure of the mean-square curvature of the parameter over
the interval [0, 1].

The Tikhonov regularized problem

minimize ||Ax — b||% + 6| Az3

can be used to trade off the objective | Az — b||?, which might represent a measure
of fit, or consistency with experimental data, and the objective ||Az|?, which is
(approximately) the mean-square curvature of the underlying physical parameter.
The parameter ¢ is used to control the amount of regularization required, or to
plot the optimal trade-off curve of fit versus smoothness.

We can also add several regularization terms. For example, we can add terms
associated with smoothness and size, as in

minimize ||Ax — b||% + 6| Az||3 + nl|x||3.

Here, the parameter 6 > 0 is used to control the smoothness of the approximate
solution, and the parameter n > 0 is used to control its size.

Example 6.3 Optimal input design. We consider a dynamical system with scalar
input sequence u(0), u(1),...,u(N), and scalar output sequence y(0), y(1),...,y(N),
related by convolution:

y(t) =Y h(r)ult—71), t=0,1,...,N.
=0
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The sequence h(0), h(1),...,h(N) is called the convolution kernel or impulse response
of the system.

Our goal is to choose the input sequence u to achieve several goals.

o Qutput tracking. The primary goal is that the output y should track, or follow,
a desired target or reference signal yges. We measure output tracking error by
the quadratic function

N
Jtrack = m Zo(y(t) - ydes(t)) .
t—

e Small input. The input should not be large. We measure the magnitude of the
input by the quadratic function

N
Jimag = N_l_l;u(t) .

e Small input variations. The input should not vary rapidly. We measure the
magnitude of the input variations by the quadratic function

1 2
i (u(t+1) —u(t)”.

t=0

Jder =

By minimizing a weighted sum
Jirack + 6Jder + nJmagw

where 6 > 0 and 1 > 0, we can trade off the three objectives.

Now we consider a specific example, with N = 200, and impulse response
1
h(t) = §(0.9)’§(1 — 0.4 cos(2t)).

Figure 6.6 shows the optimal input, and corresponding output (along with the desired
trajectory ydes), for three values of the regularization parameters 6 and 7. The top
row shows the optimal input and corresponding output for § = 0, n = 0.005. In this
case we have some regularization for the magnitude of the input, but no regularization
for its variation. While the tracking is good (i.e., we have Jirack is small), the input
required is large, and rapidly varying. The second row corresponds to 6 = 0, n = 0.05.
In this case we have more magnitude regularization, but still no regularization for
variation in u. The corresponding input is indeed smaller, at the cost of a larger
tracking error. The bottom row shows the results for § = 0.3, n = 0.05. In this
case we have added some regularization for the variation. The input variation is
substantially reduced, with not much increase in output tracking error.

{1-norm regularization

Regularization with an ¢;-norm can be used as a heuristic for finding a sparse
solution. For example, consider the problem

minimize [[Az — b||2 + v||z||1, (6.11)
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Figure 6.6 Optimal inputs (left) and resulting outputs (right) for three values
of the regularization parameters ¢ (which corresponds to input variation) and
1 (which corresponds to input magnitude). The dashed line in the righthand
plots shows the desired output yges. Top row: § = 0, n = 0.005; middle row:
6 =0, n = 0.05; bottom row: § = 0.3, n = 0.05.
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6.3.3

in which the residual is measured with the Euclidean norm and the regularization is
done with an ¢;-norm. By varying the parameter v we can sweep out the optimal
trade-off curve between ||Ax — b||2 and ||z||1, which serves as an approximation
of the optimal trade-off curve between ||Ax — bl|s and the sparsity or cardinality
card(z) of the vector z, i.e., the number of nonzero elements. The problem (6.11)
can be recast and solved as an SOCP.

Example 6.4 Regressor selection problem.  We are given a matrix A € R™*",
whose columns are potential regressors, and a vector b € R™ that is to be fit by a
linear combination of k < n columns of A. The problem is to choose the subset of k
regressors to be used, and the associated coefficients. We can express this problem
as

minimize  ||Az — bl|2

subject to card(z) < k.

In general, this is a hard combinatorial problem.

One straightforward approach is to check every possible sparsity pattern in x with k
nonzero entries. For a fixed sparsity pattern, we can find the optimal x by solving
a least-squares problem, i.e., minimizing HA@ — bl|2, where A denotes the submatrix
of A obtained by keeping the columns corresponding to the sparsity pattern, and
Z is the subvector with the nonzero components of x. This is done for each of the
n!/(k!(n — k)!) sparsity patterns with k nonzeros.

A good heuristic approach is to solve the problem (6.11) for different values of ~,
finding the smallest value of 7y that results in a solution with card(z) = k. We then
fix this sparsity pattern and find the value of z that minimizes || Az — bl|2.

Figure 6.7 illustrates a numerical example with A € R1°%%° 2z ¢ R?° b € R'°. The
circles on the dashed curve are the (globally) Pareto optimal values for the trade-off
between card(z) (vertical axis) and the residual ||Az — b||2 (horizontal axis). For
each k, the Pareto optimal point was obtained by enumerating all possible sparsity
patterns with k nonzero entries, as described above. The circles on the solid curve
were obtained with the heuristic approach, by using the sparsity patterns of the
solutions of problem (6.11) for different values of . Note that for card(z) = 1, the
heuristic method actually finds the global optimum.

This idea will come up again in basis pursuit (§6.5.4).

Reconstruction, smoothing, and de-noising

In this section we describe an important special case of the bi-criterion approxi-
mation problem described above, and give some examples showing how different
regularization methods perform. In reconstruction problems, we start with a signal
represented by a vector x € R"™. The coefficients x; correspond to the value of
some function of time, evaluated (or sampled, in the language of signal processing)
at evenly spaced points. It is usually assumed that the signal does not vary too
rapidly, which means that usually, we have z; ~ x;;1. (In this section we consider
signals in one dimension, e.g., audio signals, but the same ideas can be applied to
signals in two or more dimensions, e.g., images or video.)
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0 ‘ ‘ C

2
[ Az — b2
Figure 6.7 Sparse regressor selection with a matrix A € R'°%?°, The circles
on the dashed line are the Pareto optimal values for the trade-off between
the residual ||Az — b||2 and the number of nonzero elements card(z). The
points indicated by circles on the solid line are obtained via the ¢;-norm
regularized heuristic.

The signal z is corrupted by an additive noise v:
Leor = L + V.

The noise can be modeled in many different ways, but here we simply assume that
it is unknown, small, and, unlike the signal, rapidly varying. The goal is to form an
estimate & of the original signal x, given the corrupted signal x.,,. This process is
called signal reconstruction (since we are trying to reconstruct the original signal
from the corrupted version) or de-noising (since we are trying to remove the noise
from the corrupted signal). Most reconstruction methods end up performing some
sort of smoothing operation on x., to produce &, so the process is also called
smoothing.

One simple formulation of the reconstruction problem is the bi-criterion problem
minimize (w.r.t. RY)  (|& — Zeor|l2, #(2)) (6.12)

where # is the variable and z¢,, is a problem parameter. The function ¢ : R" — R
is convex, and is called the regularization function or smoothing objective. It is
meant to measure the roughness, or lack of smoothness, of the estimate &. The
reconstruction problem (6.12) seeks signals that are close (in ¢3-norm) to the cor-
rupted signal, and that are smooth, i.e., for which ¢(Z) is small. The reconstruction
problem (6.12) is a convex bi-criterion problem. We can find the Pareto optimal
points by scalarization, and solving a (scalar) convex optimization problem.
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Quadratic smoothing

The simplest reconstruction method uses the quadratic smoothing function

n—1

Squaa(t) = Y (zir1 — ;) = | Dell3,

i=1

where D € RM™UX" i5 the bidiagonal matrix

-1 1 0 --- 0 0 0
o -1 1 --- 0 0 0
D= R o
0 o o0 --- —1 1 0
0 o o0 --- 0 -1 1

We can obtain the optimal trade-off between ||Z — Zcor||2 and ||DZ||2 by minimizing
12 = zeorll3 + Ol DE[13,

where § > 0 parametrizes the optimal trade-off curve. The solution of this quadratic
problem,
&= (I+6DT"D)  2eor,

can be computed very efficiently since I 4+ §DT D is tridiagonal; see appendix C.

Quadratic smoothing example

Figure 6.8 shows a signal 2 € R*% (top) and the corrupted signal zco, (bottom).
The optimal trade-off curve between the objectives ||& — zcor||2 and || DZ||2 is shown
in figure 6.9. The extreme point on the left of the trade-off curve corresponds to
& = ZTeor, and has objective value || Dzcor||2 = 4.4. The extreme point on the right
corresponds to & = 0, for which || — Zcor||2 = ||Zcor|l2 = 16.2. Note the clear knee
in the trade-off curve near || — Zcor||2 & 3.

Figure 6.10 shows three smoothed signals on the optimal trade-off curve, cor-
responding to || — Zeorll2 = 8 (top), 3 (middle), and 1 (bottom). Comparing the
reconstructed signals with the original signal x, we see that the best reconstruction
is obtained for || — Zcor||2 = 3, which corresponds to the knee of the trade-off
curve. For higher values of ||& — Zcor||2, there is too much smoothing; for smaller
values there is too little smoothing.

Total variation reconstruction

Simple quadratic smoothing works well as a reconstruction method when the orig-
inal signal is very smooth, and the noise is rapidly varying. But any rapid varia-
tions in the original signal will, obviously, be attenuated or removed by quadratic
smoothing. In this section we describe a reconstruction method that can remove
much of the noise, while still preserving occasional rapid variations in the original
signal. The method is based on the smoothing function

n—1

Su(®) = Y |Ei1 — &i| = || D1,
=1
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Figure 6.8 Top: the original signal « € R*°°°. Bottom: the corrupted signal

Tcor-
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& = Zeor|2
Figure 6.9 Optimal trade-off curve between || Dz||2 and || — Zcor||2. The
curve has a clear knee near ||Z — Zeor|| =~ 3.
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Figure 6.10 Three smoothed or reconstructed signals . The top one cor-
responds to || — Zeor|]|2 = 8, the middle one to ||# — Zcor||]2 = 3, and the
bottom one to ||# — Zeor||2 = 1.

which is called the total variation of x € R". Like the quadratic smoothness
measure @quad, the total variation function assigns large values to rapidly varying
Z. The total variation measure, however, assigns relatively less penalty to large
values of |x; 41 — x|

Total variation reconstruction example

Figure 6.11 shows a signal z € R?°® (in the top plot), and the signal corrupted
with noise z.o,. The signal is mostly smooth, but has several rapid variations or
jumps in value; the noise is rapidly varying.

We first use quadratic smoothing. Figure 6.12 shows three smoothed signals on
the optimal trade-off curve between || DZ||2 and || £ — Zcor||2- In the first two signals,
the rapid variations in the original signal are also smoothed. In the third signal
the steep edges in the signal are better preserved, but there is still a significant
amount of noise left.

Now we demonstrate total variation reconstruction. Figure 6.13 shows the
optimal trade-off curve between ||Dz[|; and || £ — Zcorr||2- Figure 6.14 shows the re-
constructed signals on the optimal trade-off curve, for ||[Dz||; =5 (top), || DZ|1 =8
(middle), and || D#||; = 10 (bottom). We observe that, unlike quadratic smoothing,
total variation reconstruction preserves the sharp transitions in the signal.
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Figure 6.11 A signal z € RQOOO, and the corrupted signal xcor € R2000 The
noise is rapidly varying, and the signal is mostly smooth, with a few rapid
variations.
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Figure 6.12 Three quadratically smoothed signals . The top one corre-
sponds to ||£ — Zcor|]]2 = 10, the middle one to ||& — Zcor||]2 = 7, and the
bottom one to ||Z — Zcor||2 = 4. The top one greatly reduces the noise, but
also excessively smooths out the rapid variations in the signal. The bottom
smoothed signal does not give enough noise reduction, and still smooths out
the rapid variations in the original signal. The middle smoothed signal gives
the best compromise, but still smooths out the rapid variations.

% 10 20 30 40 50

12 — Zeor |2

Figure 6.13 Optimal trade-off curve between || Dz||1 and [|Z — Zcor||2-
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Figure 6.14 Three reconstructed signals Z, using total variation reconstruc-
tion. The top one corresponds to ||[D#||1 = 5, the middle one to ||Dz|j1 = 8,
and the bottom one to ||DZ||1 = 10. The bottom one does not give quite
enough noise reduction, while the top one eliminates some of the slowly vary-
ing parts of the signal. Note that in total variation reconstruction, unlike
quadratic smoothing, the sharp changes in the signal are preserved.
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6.4
6.4.1

Robust approximation

Stochastic robust approximation

We consider an approximation problem with basic objective || Az —b||, but also wish
to take into account some uncertainty or possible variation in the data matrix A.
(The same ideas can be extended to handle the case where there is uncertainty in
both A and b.) In this section we consider some statistical models for the variation
in A.

We assume that A is a random variable taking values in R”*", with mean A,

so we can describe A as
A=A+U,

where U is a random matrix with zero mean. Here, the constant matrix A gives
the average value of A, and U describes its statistical variation.
It is natural to use the expected value of ||Az — b|| as the objective:

minimize E| Az — b||. (6.13)

We refer to this problem as the stochastic robust approximation problem. It is
always a convex optimization problem, but usually not tractable since in most
cases it is very difficult to evaluate the objective or its derivatives.

One simple case in which the stochastic robust approximation problem (6.13)
can be solved occurs when A assumes only a finite number of values, i.e.,

prob(A=A;)=p;, i=1,...,k,
where A; € R"*", 1Tp =1, p = 0. In this case the problem (6.13) has the form
minimize p1||41z —b|| + - + prl|Arz — b,

which is often called a sum-of-norms problem. It can be expressed as

minimize pTt

subject to |4,z —b|| <t;, i=1,...,k,

where the variables are z € R™ and ¢t € R”. If the norm is the Euclidean norm,
this sum-of-norms problem is an SOCP. If the norm is the ¢;1- or f,,-norm, the
sum-of-norms problem can be expressed as an LP; see exercise 6.8.

Some variations on the statistical robust approximation problem (6.13) are
tractable. As an example, consider the statistical robust least-squares problem

minimize E ||Az — b||3,
where the norm is the Euclidean norm. We can express the objective as

E|Az b3 = E(Az—b+Uz)'(Az —b+ Ux)
(Az — b)) (Az —b) + E2"UTUz
|Az — b||3 + 27 Pax,
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where P = EUTU. Therefore the statistical robust approximation problem has
the form of a regularized least-squares problem

minimize || Az — b||3 + | PY/%x|)3,

with solution
v = (ATA+ P)"' AT,

This makes perfect sense: when the matrix A is subject to variation, the vector
Az will have more variation the larger x is, and Jensen’s inequality tells us that
variation in Az will increase the average value of || Az — b||2. So we need to balance
making Az — b small with the desire for a small z (to keep the variation in Ax
small), which is the essential idea of regularization.

This observation gives us another interpretation of the Tikhonov regularized
least-squares problem (6.10), as a robust least-squares problem, taking into account
possible variation in the matrix A. The solution of the Tikhonov regularized least-
squares problem (6.10) minimizes E ||(A + U)z — b||?, where U;; are zero mean,
uncorrelated random variables, with variance d/m (and here, A is deterministic).

Worst-case robust approximation

It is also possible to model the variation in the matrix A using a set-based, worst-
case approach. We describe the uncertainty by a set of possible values for A:

Aec ACR™,

which we assume is nonempty and bounded. We define the associated worst-case
error of a candidate approximate solution x € R™ as

ewe(r) = sup{||Az — b|| | A € A},

which is always a convex function of x. The (worst-case) robust approximation
problem is to minimize the worst-case error:

minimize e () = sup{||Az —b|| | A € A}, (6.14)

where the variable is z, and the problem data are b and the set A. When A is the
singleton A = {A}, the robust approximation problem (6.14) reduces to the basic
norm approximation problem (6.1). The robust approximation problem is always
a convex optimization problem, but its tractability depends on the norm used and
the description of the uncertainty set A.

Example 6.5 Comparison of stochastic and worst-case robust approximation. To
illustrate the difference between the stochastic and worst-case formulations of the
robust approximation problem, we consider the least-squares problem

minimize || A(u)z — b||3,

where u € R is an uncertain parameter and A(u) = Ao + uAd;. We consider a
specific instance of the problem, with A(u) € R?°*! || Ag|| = 10, ||A1|| = 1, and u
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Figure 6.15 The residual r(u) = ||A(u)z — b||2 as a function of the un-
certain parameter u for three approximate solutions z: (1) the nominal
least-squares solution Znom; (2) the solution of the stochastic robust approx-
imation problem Zgiocn (assuming u is uniformly distributed on [—1, 1]); and
(3) the solution of the worst-case robust approximation problem Zwc, as-
suming the parameter u lies in the interval [—1,1]. The nominal solution
achieves the smallest residual when u = 0, but gives much larger residuals
as u approaches —1 or 1. The worst-case solution has a larger residual when
u = 0, but its residuals do not rise much as the parameter u varies over the
interval [—1,1].

in the interval [—1,1]. (So, roughly speaking, the variation in the matrix A is around
+10%.)

We find three approximate solutions:
e Nominal optimal. The optimal solution Znom is found, assuming A(u) has its
nominal value Ag.

e Stochastic robust approzimation. We find Zstoch, which minimizes E || A(u)x —
b||3, assuming the parameter u is uniformly distributed on [—1, 1].

o Worst-case robust approzimation. We find Zwc, which minimizes

sup [|[A(u)z — bll2 = max{[[(Ao — A1)z — b||2, [|(Ao + A1)z — bl|2}
<u<1l

For each of these three values of z, we plot the residual r(u) = ||A(u)z — b||2 as a
function of the uncertain parameter u, in figure 6.15. These plots show how sensitive
an approximate solution can be to variation in the parameter u. The nominal solu-
tion achieves the smallest residual when v = 0, but is quite sensitive to parameter
variation: it gives much larger residuals as u deviates from 0, and approaches —1 or
1. The worst-case solution has a larger residual when u = 0, but its residuals do not
rise much as u varies over the interval [—1,1]. The stochastic robust approximate
solution is in between.
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The robust approximation problem (6.14) arises in many contexts and applica-
tions. In an estimation setting, the set A gives our uncertainty in the linear relation
between the vector to be estimated and our measurement vector. Sometimes the
noise term v in the model y = Ax + v is called additive noise or additive error,
since it is added to the ‘ideal’ measurement Ax. In contrast, the variation in A is
called multiplicative error, since it multiplies the variable x.

In an optimal design setting, the variation can represent uncertainty (arising in
manufacture, say) of the linear equations that relate the design variables x to the
results vector Az. The robust approximation problem (6.14) is then interpreted as
the robust design problem: find design variables z that minimize the worst possible
mismatch between Az and b, over all possible values of A.

Finite set
Here we have A = {A1,..., A}, and the robust approximation problem is
minimize max;—; . ||[Aiz — b

This problem is equivalent to the robust approximation problem with the polyhe-
dral set A = conv{Ay,...,A;}:

minimize sup {||Ax —b|| | A € conv{A4;,..., Ax}}.
We can cast the problem in epigraph form as
minimize ¢
subject to |4,z — bl <t, i=1,...,k,
which can be solved in a variety of ways, depending on the norm used. If the norm

is the Euclidean norm, this is an SOCP. If the norm is the ¢1- or {,,-norm, we can
express it as an LP.

Norm bound error

Here the uncertainty set A is a norm ball, A = {A+U | |U|| < a}, where || - || is a
norm on R™*". In this case we have

ewe() = sup{|| Az — b+ Uz|| | [|U]| < a},

which must be carefully interpreted since the first norm appearing is on R™ (and
is used to measure the size of the residual) and the second one appearing is on
R™*"™ (used to define the norm ball A).

This expression for ey.(x) can be simplified in several cases. As an example,
let us take the Euclidean norm on R™ and the associated induced norm on R™*"™,
i.e., the maximum singular value. If Az — b # 0 and = # 0, the supremum in the
expression for ey (z) is attained for U = auv®, with

" Az —b Y T
Az —bl|o’ ]2

and the resulting worst-case error is

ewe(w) = || Az — bll2 + al|z|2.
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(It is easily verified that this expression is also valid if x or Az — b is zero.) The
robust approximation problem (6.14) then becomes

minimize [|Az — b||s + al|x||2,
which is a regularized norm problem, solvable as the SOCP

minimize t1 + aty
subject to  ||[Ax — bl < t1, |z < to.

Since the solution of this problem is the same as the solution of the regularized
least-squares problem

minimize ||Ax — b||3 + & z||?

for some value of the regularization parameter §, we have another interpretation of
the regularized least-squares problem as a worst-case robust approximation prob-
lem.

Uncertainty ellipsoids

We can also describe the variation in A by giving an ellipsoid of possible values for
each row:

Az{[al am]T ‘ a; Egi, 1= 1,...,m},
where

The matrix P; € R™*"™ describes the variation in a;. We allow P; to have a nontriv-
ial nullspace, in order to model the situation when the variation in a; is restricted
to a subspace. As an extreme case, we take P; = 0 if there is no uncertainty in a;.

With this ellipsoidal uncertainty description, we can give an explicit expression
for the worst-case magnitude of each residual:

sug |aiTx bl = sup{|&iTx —b; + (Piu)Ta:| | lull2 <1}
a; €&

= laiz = bi + [|P] 2.

Using this result we can solve several robust approximation problems. For
example, the robust /;-norm approximation problem

minimize ewc(x) = sup{||Az —b|2 | a; € &, i=1,...,m}

can be reduced to an SOCP, as follows. An explicit expression for the worst-case
error is given by

m o\ 1/2 m 1/2

ewcl(®) = (Z (sug o x—bil) ) = (Z(la?w—bil - P?x|2>2> .
i=1 N0i€& i=1

To minimize ey (x) we can solve

minimize  ||¢||2
subject to |alz —b;| + |Plz|s <t;, i=1,...,m,
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where we introduced new variables t1,...,t,,. This problem can be formulated as
minimize  ||¢|2
subject to alx —b;+ |Plz|s <t;, i=1,...,m
—alz+b;+|Plz|a <t;, i=1,...,m,

which becomes an SOCP when put in epigraph form.

Norm bounded error with linear structure
As a generalization of the norm bound description A = {A+U | |U]| < a}, we can
define A as the image of a norm ball under an affine transformation:

A= {A+U1A1 +U2A2+"'+upAp | HUH < 1}’

where || - || is a norm on R”, and the p + 1 matrices A, A;,..., A4, € R™*" are
given. The worst-case error can be expressed as

ewe(r) = sup |[(A+wugd;+---+ upAp)z — b
flull<1

= sup [[P(z)u+qg(z)l,
lull<1

where P and ¢ are defined as
P(z)=[ Az Az -+ Apz | e R™P, q(z) = Ar —b e R™.
As a first example, we consider the robust Chebyshev approximation problem
minimize ey () = supj, <1 [(A+ur Ay + -+ upAp)z — bl oo-

In this case we can derive an explicit expression for the worst-case error. Let p;(z)7

denote the ith row of P(z). We have
ewe(x) = S [1P(x)u + ¢(2)]| oo
Ul oo <1

= max sup |pi($)Tu+qz'(l‘)\
=M |y o <1

Lmax ([pi(@)]s + o).

The robust Chebyshev approximation problem can therefore be cast as an LP

minimize t

subject to —yo = Az — b <y
—yr 2 Agz 2y, k=1,...,p
Yo + D op_y Yk =1,

with variables x € R", yx € R™, t € R.
As another example, we consider the robust least-squares problem

minimize  ewe () = sup|, <1 (A +u1dr + -+ upAp)z — b2
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Here we use Lagrange duality to evaluate ey.. The worst-case error ey.(z) is the
squareroot of the optimal value of the (nonconvex) quadratic optimization problem

maximize ||P(z)u + q(x)||3
subject to  ufu <1,

with u as variable. The Lagrange dual of this problem can be expressed as the
SDP

minimize ¢+ A
I P@ q@)
subject to P(x)T A 0 =0
gz)” 0t

with variables ¢, A € R. Moreover, as mentioned in §5.2 and §B.1 (and proved
in §B.4), strong duality holds for this pair of primal and dual problems. In other
words, for fixed x, we can compute ey (x)? by solving the SDP (6.15) with variables
t and \. Optimizing jointly over ¢, \, and x is equivalent to minimizing ey.(z)?.
We conclude that the robust least-squares problem is equivalent to the SDP (6.15)
with z, A, t as variables.

(6.15)

Example 6.6 Comparison of worst-case robust, Tikhonov reqularized, and nominal
least-squares solutions. We consider an instance of the robust approximation problem

minimize  supj,,<; [[(A +u1 A1 + uzAz)x — b2, (6.16)

with dimensions m = 50, n = 20. The matrix A has norm 10, and the two matrices
A; and Az have norm 1, so the variation in the matrix A is, roughly speaking, around
10%. The uncertainty parameters u; and uy lie in the unit disk in R2.

We compute the optimal solution of the robust least-squares problem (6.16) s, as
well as the solution of the nominal least-squares problem zis (i.e., assuming v = 0),
and also the Tikhonov regularized solution xk, with § = 1.

To illustrate the sensitivity of each of these approximate solutions to the parameter
u, we generate 10° parameter vectors, uniformly distributed on the unit disk, and
evaluate the residual

|(Ao +u1Ar +u2Az2)x — b2

for each parameter value. The distributions of the residuals are shown in figure 6.16.

We can make several observations. First, the residuals of the nominal least-squares
solution are widely spread, from a smallest value around 0.52 to a largest value
around 4.9. In particular, the least-squares solution is very sensitive to parameter
variation. In contrast, both the robust least-squares and Tikhonov regularized so-
lutions exhibit far smaller variation in residual as the uncertainty parameter varies
over the unit disk. The robust least-squares solution, for example, achieves a residual
between 2.0 and 2.6 for all parameters in the unit disk.

6.5 Function fitting and interpolation

In function fitting problems, we select a member of a finite-dimensional subspace
of functions that best fits some given data or requirements. For simplicity we
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e I .

||(A0 —+ ’LL1A1 —+ ’LLQAQ).I‘ — b||2

Figure 6.16 Distribution of the residuals for the three solutions of a least-
squares problem (6.16): x5, the least-squares solution assuming u = 0; Tk,
the Tikhonov regularized solution with § = 1; and x5, the robust least-
squares solution. The histograms were obtained by generating 10° values of
the uncertain parameter vector u from a uniform distribution on the unit
disk in R?. The bins have width 0.1.
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6.5.1

consider real-valued functions; the ideas are readily extended to handle vector-
valued functions as well.

Function families

We consider a family of functions fi,..., f, : R* — R, with common domain
dom f; = D. With each z € R" we associate the function f : R* — R given by

with dom f = D. The family {fi,..., fn} is sometimes called the set of basis
functions (for the fitting problem) even when the functions are not independent.
The vector x € R", which parametrizes the subspace of functions, is our optimiza-
tion variable, and is sometimes called the coefficient vector. The basis functions
generate a subspace F of functions on D.

In many applications the basis functions are specially chosen, using prior knowl-
edge or experience, in order to reasonably model functions of interest with the
finite-dimensional subspace of functions. In other cases, more generic function
families are used. We describe a few of these below.

Polynomials

One common subspace of functions on R consists of polynomials of degree less
than n. The simplest basis consists of the powers, i.e., fi(t) = t""1 i=1,...,n.
In many applications, the same subspace is described using a different basis, for
example, a set of polynomials f1,..., f,, of degree less than n, that are orthonormal
with respect to some positive function (or measure) ¢ : R" — R, i.e.,

1=
[roswowa={ g 157
Another common basis for polynomials is the Lagrange basis f1,..., f, associated

with distinct points ¢4, ...,t,, which satisfy
1 i=3
fz(tﬂ)_{ 0 it

We can also consider polynomials on Rk7 with a maximum total degree, or a
maximum degree for each variable.

As a related example, we have trigonometric polynomials of degree less than n,
with basis

sinkt, k=1,...,n—1, coskt, k=0,...,n—1.

Piecewise-linear functions

We start with a triangularization of the domain D, which means the following. We
have a set of mesh or grid points g1,...,9n € R”, and a partition of D into a set
of simplexes:

D=5 U---US,,, il’lt(SiﬂSj):@fOI‘i#j.
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Figure 6.17 A piecewise-linear function of two variables, on the unit square.
The triangulation consists of 98 simplexes, and a uniform grid of 64 points
in the unit square.

Each simplex is the convex hull of k 4+ 1 grid points, and we require that each grid
point is a vertex of any simplex it lies in.

Given a triangularization, we can construct a piecewise-linear (or more precisely,
piecewise-affine) function f by assigning function values f(g;) = x; to the grid
points, and then extending the function affinely on each simplex. The function f
can be expressed as (6.17) where the basis functions f; are affine on each simplex
and are defined by the conditions

san-{ )15

By construction, such a function is continuous.

Figure 6.17 shows an example for k = 2.

Piecewise polynomials and splines

The idea of piecewise-affine functions on a triangulated domain is readily extended
to piecewise polynomials and other functions.

Piecewise polynomials are defined as polynomials (of some maximum degree)
on each simplex of the triangulation, which are continuous, i.e., the polynomials
agree at the boundaries between simplexes. By further restricting the piecewise
polynomials to have continuous derivatives up to a certain order, we can define
various classes of spline functions. Figure 6.18 shows an example of a cubic spline,
i.e., a piecewise polynomial of degree 3 on R, with continuous first and second
derivatives.
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Uo U1 U2 us

Figure 6.18 Cubic spline. A cubic spline is a piecewise polynomial, with
continuous first and second derivatives. In this example, the cubic spline f
is formed from the three cubic polynomials p1 (on [uo,u1]), p2 (on [u1,u2]),
and ps (on [ug2,us]). Adjacent polynomials have the same function value,
and equal first and second derivatives, at the boundary points u; and wus.
In this example, the dimension of the family of functions is n = 6, since
we have 12 polynomial coefficients (4 per cubic polynomial), and 6 equality
constraints (3 each at w1 and u2).
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6.5.2 Constraints

In this section we describe some constraints that can be imposed on the function
f, and therefore, on the variable x € R".

Function value interpolation and inequalities

Let v be a point in D. The value of f at v,

fv) = Z ;i fi(v),

is a linear function of x. Therefore interpolation conditions

flvj)=z2;, j=1,...,m,

which require the function f to have the values z; € R at specified points v; € D,
form a set of linear equalities in x. More generally, inequalities on the function
value at a given point, as in [ < f(v) < u, are linear inequalities on the variable x.
There are many other interesting convex constraints on f (hence, x) that involve
the function values at a finite set of points vy, ...,vy. For example, the Lipschitz
constraint

|f(v;) = fluk)l < Lllvy —wvill, J, k=1,...,m,

forms a set of linear inequalities in x.
We can also impose inequalities on the function values at an infinite number of
points. As an example, consider the nonnegativity constraint

f(u) >0 forall u € D.

This is a convex constraint on z (since it is the intersection of an infinite number
of halfspaces), but may not lead to a tractable problem except in special cases
that exploit the particular structure of the functions. One simple example occurs
when the functions are piecewise-linear. In this case, if the function values are
nonnegative at the grid points, the function is nonnegative everywhere, so we obtain
a simple (finite) set of linear inequalities.

As a less trivial example, consider the case when the functions are polynomials
on R, with even maximum degree 2k (i.e., n = 2k 4+ 1), and D = R. As shown in
exercise 2.37, page 65, the nonnegativity constraint

p(u) =z +z2u+-- -+ x2k+1U2k >0 forallueR,
is equivalent to

zi= Y Y, i=1,...2k+1, Y =0,
m4n=i+1

where Y € 8" is an auxiliary variable.
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Derivative constraints

Suppose the basis functions f; are differentiable at a point v € D. The gradient
Vi) =Y x:Vfiv),
i=1

is a linear function of x, so interpolation conditions on the derivative of f at v
reduce to linear equality constraints on x. Requiring that the norm of the gradient
at v not exceed a given limit,

IVf()l = < M,

> @V fi(v)
i=1

is a convex constraint on xz. The same idea extends to higher derivatives. For
example, if f is twice differentiable at v, the requirement that

I =V?f(v) <ul

is a linear matrix inequality in x, hence convex.
We can also impose constraints on the derivatives at an infinite number of
points. For example, we can require that f is monotone:

f(u) > f(v) for all u, v € D, u > v.

This is a convex constraint in x, but may not lead to a tractable problem except in
special cases. When f is piecewise affine, for example, the monotonicity constraint
is equivalent to the condition V f(v) = 0 inside each of the simplexes. Since the
gradient is a linear function of the grid point values, this leads to a simple (finite)
set of linear inequalities.

As another example, we can require that the function be convex, i.e., satisfy

Fl(u+v)/2) < (f(u) + f(v))/2 for all u, v € D

(which is enough to ensure convexity when f is continuous). This is a convex con-
straint, which has a tractable representation in some cases. One obvious example
is when f is quadratic, in which case the convexity constraint reduces to the re-
quirement that the quadratic part of f be nonnegative, which is an LMI. Another
example in which a convexity constraint leads to a tractable problem is described
in more detail in §6.5.5.

Integral constraints

Any linear functional £ on the subspace of functions can be expressed as a linear
function of z, i.e., we have L(f) = ¢’ z. Evaluation of f (or a derivative) at a point
is just a special case. As another example, the linear functional

c(f) = /D () f () ds,
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where ¢ : R¥ — R, can be expressed as L(f) = 'z, where

& = /D o(u) fi(u) du.

Thus, a constraint of the form L£(f) = a is a linear equality constraint on z. One
example of such a constraint is the moment constraint

/Dtmf(t) dt =a

(where f : R — R).

Fitting and interpolation problems

Minimum norm function fitting

In a fitting problem, we are given data

(ulayl)a L) (umaym)

with u; € D and y; € R, and seek a function f € F that matches this data as
closely as possible. For example in least-squares fitting we consider the problem

minimize Y .-, (f(wi) — v:)?,

which is a simple least-squares problem in the variable x. We can add a variety of
constraints, for example linear inequalities that must be satisfied by f at various
points, constraints on the derivatives of f, monotonicity constraints, or moment
constraints.

Example 6.7 Polynomial fitting. We are given data u1,...,um € R and v1,...,vm €
R, and hope to approximately fit a polynomial of the form

p(u) =21 + 20+ -+ + zpu !
to the data. For each x we form the vector of errors,
e=(p(u1) = v1,...,p(um) — vm).

To find the polynomial that minimizes the norm of the error, we solve the norm
approximation problem

minimize |le]] = ||Az — v||

with variable z € R"™, where A;; = u{fl, i=1,....m,j=1,...,n.

Figure 6.19 shows an example with m = 40 data points and n = 6 (i.e., polynomials
of maximum degree 5), for the £2- and foc-norms.
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Figure 6.19 Two polynomials of degree 5 that approximate the 40 data
points shown as circles. The polynomial shown as a solid line minimizes the
lo-norm of the error; the polynomial shown as a dashed line minimizes the
foo-norm.

0.2

—0.1

Figure 6.20 Two cubic splines that approximate the 40 data points shown as
circles (which are the same as the data in figure 6.19). The spline shown as
a solid line minimizes the £2-norm of the error; the spline shown as a dashed
line minimizes the fo-norm. As in the polynomial approximation shown in
figure 6.19, the dimension of the subspace of fitting functions is 6.
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Example 6.8 Spline fitting. Figure 6.20 shows the same data as in example 6.7,
and two optimal fits with cubic splines. The interval [—1,1] is divided into three
equal intervals, and we consider piecewise polynomials, with maximum degree 3, with
continuous first and second derivatives. The dimension of this subspace of functions
is 6, the same as the dimension of polynomials with maximum degree 5, considered
in example 6.7.

In the simplest forms of function fitting, we have m > n, i.e., the number
of data points is much larger than the dimension of the subspace of functions.
Smoothing is accomplished automatically, since all members of the subspace are
smooth.

Least-norm interpolation

In another variation of function fitting, we have fewer data points than the dimen-
sion of the subspace of functions. In the simplest case, we require that the function
we choose must satisfy the interpolation conditions

f(uz):yh ’iil,...,m,

which are linear equality constraints on z. Among the functions that satisfy these
interpolation conditions, we might seek one that is smoothest, or smallest. These
lead to least-norm problems.

In the most general function fitting problem, we can optimize an objective
(such as some measure of the error e), subject to a variety of convex constraints
that represent our prior knowledge of the underlying function.

Interpolation, extrapolation, and bounding

By evaluating the optimal function fit f at a point v not in the original data set,
we obtain a guess of what the value of the underlying function is, at the point v.
This is called interpolation when v is between or near the given data points (e.g.,
v € conv{v,...,v,}), and extrapolation otherwise.

We can also produce an interval in which the value f(v) can lie, by maximizing
and minimizing (the linear function) f(v), subject to the constraints. We can use
the function fit to help identify faulty data or outliers. Here we might use, for
example, an ¢1-norm fit, and look for data points with large errors.

Sparse descriptions and basis pursuit

In basis pursuit, there is a very large number of basis functions, and the goal is to
find a good fit of the given data as a linear combination of a small number of the
basis functions. (In this context the function family is linearly dependent, and is
sometimes referred to as an over-complete basis or dictionary.) This is called basis
pursuit since we are selecting a much smaller basis, from the given over-complete
basis, to model the data.
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Thus we seek a function f € F that fits the data well,
f(ul)%y’m i:17"'7m7

with a sparse coefficient vector z, i.e., card(z) small. In this case we refer to

f=o1fit - Fagfn= Z%‘fm
i€B
where B = {i | z; # 0} is the set of indices of the chosen basis elements, as a sparse
description of the data. Mathematically, basis pursuit is the same as the regressor
selection problem (see §6.4), but the interpretation (and scale) of the optimization
problem are different.

Sparse descriptions and basis pursuit have many uses. They can be used for
de-noising or smoothing, or data compression for efficient transmission or storage
of a signal. In data compression, the sender and receiver both know the dictionary,
or basis elements. To send a signal to the receiver, the sender first finds a sparse
representation of the signal, and then sends to the receiver only the nonzero coef-
ficients (to some precision). Using these coefficients, the receiver can reconstruct
(an approximation of) the original signal.

One common approach to basis pursuit is the same as the method for regressor
selection described in §6.4, and based on ¢;-norm regularization as a heuristic for
finding sparse descriptions. We first solve the convex problem

minimize Y7, (f(us) — )% + 1. (6.18)

where v > 0 is a parameter used to trade off the quality of the fit to the data,
and the sparsity of the coefficient vector. The solution of this problem can be used
directly, or followed by a refinement step, in which the best fit is found, using the
sparsity pattern of the solution of (6.18). In other words, we first solve (6.18), to
obtain . We then set B = {i | &; # 0}, i.e., the set of indices corresponding to
nonzero coefficients. Then we solve the least-squares problem

minimize Y0, (f(u;) — y;)?

with variables x;, i € B, and z; = 0 for i &€ B.

In basis pursuit and sparse description applications it is not uncommon to have
a very large dictionary, with n on the order of 10* or much more. To be effective,
algorithms for solving (6.18) must exploit problem structure, which derives from
the structure of the dictionary signals.

Time-frequency analysis via basis pursuit

In this section we illustrate basis pursuit and sparse representation with a simple
example. We consider functions (or signals) on R, with the range of interest [0, 1].
We think of the independent variable as time, so we use t (instead of u) to denote
it.

We first describe the basis functions in the dictionary. Each basis function is a
Gaussian sinusoidal pulse, or Gabor function, with form

e~ (t=7)?/c” cos(wt + ),
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Figure 6.21 Three of the basis elements in the dictionary, all with center time
7 = 0.5 and cosine phase. The top signal has frequency w = 0, the middle
one has frequency w = 75, and the bottom one has frequency w = 150.

where o > 0 gives the width of the pulse, 7 is the time of (the center of) the pulse,
w > 0 is the frequency, and ¢ is the phase angle. All of the basis functions have
width ¢ = 0.05. The pulse times and frequencies are

7=0002k, k=0,...,500, w=5k k=0,...,30.

For each time 7, there is one basis element with frequency zero (and phase ¢ = 0),
and 2 basis elements (cosine and sine, i.e., phase ¢ = 0 and ¢ = 7/2) for each of 30
remaining frequencies, so all together there are 501 x 61 = 30561 basis elements.
The basis elements are naturally indexed by time, frequency, and phase (cosine or
sine), so we denote them as

froe  7=0,0002,...,1, w=0,5,...,150,
fros,  7=0,0002,...,1, w=5,...,150.

Three of these basis functions (all with time 7 = 0.5) are shown in figure 6.21.
Basis pursuit with this dictionary can be thought of as a time-frequency analysis
of the data. If a basis element f, . . or f.. s appears in the sparse representation
of a signal (i.e., with a nonzero coefficient), we can interpret this as meaning that
the data contains the frequency w at time 7.
We will use basis pursuit to find a sparse approximation of the signal

y(t) = a(t) sin O(t)
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Figure 6.22 Top. The original signal (solid line) and approximation § ob-
tained by basis pursuit (dashed line) are almost indistinguishable. Bottom.
The approximation error y(t) — 4(¢), with different vertical scale.

where

a(t) =1+ 0.5sin(11¢), 0(t) = 30sin(5¢).

(This signal is chosen only because it is simple to describe, and exhibits noticeable
changes in its spectral content over time.) We can interpret a(t) as the signal
amplitude, and 0(t) as its total phase. We can also interpret

do
w(t) = ‘dt = 150] cos(5t)]

as the instantaneous frequency of the signal at time ¢. The data are given as 501
uniformly spaced samples over the interval [0, 1], i.e., we are given 501 pairs (¢x, yx)
with

tr = 0.005k, yr=y(tx), k=0,...,500.

We first solve the ¢;-norm regularized least-squares problem (6.18), with v =
1. The resulting optimal coefficient vector is very sparse, with only 42 nonzero
coefficients out of 30561. We then find the least-squares fit of the original signal
using these 42 basis vectors. The result ¢ is compared with the original signal
y in figure 6.22. The top figure shows the approximated signal (in dashed line)
and, almost indistinguishable, the original signal y(¢) (in solid line). The bottom
figure shows the error y(t) — g(t). As is clear from the figure, we have obtained an
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Figure 6.23 Top: Original signal. Bottom: Time-frequency plot. The dashed
curve shows the instantaneous frequency w(t) = 150| cos(5t)| of the original
signal. Each circle corresponds to a chosen basis element in the approxima-
tion obtained by basis pursuit. The horizontal axis shows the time index T,
and the vertical axis shows the frequency index w of the basis element.

approximation g with a very good relative fit. The relative error is

(1/501) 332 (y(t) = 9(8))* _ o s
(1/501) 3222, y(t:)? o

By plotting the pattern of nonzero coefficients versus time and frequency, we
obtain a time-frequency analysis of the original data. Such a plot is shown in fig-
ure 6.23, along with the instantaneous frequency. The plot shows that the nonzero

components closely track the instantaneous frequency.

Interpolation with convex functions

In some special cases we can solve interpolation problems involving an infinite-
dimensional set of functions, using finite-dimensional convex optimization. In this

section we describe an example.

We start with the following question: When does there exist a convex function

f:R* - R, with dom f = R”, that satisfies the interpolation conditions

f(u’b):yla i:17"'7m7
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at given points u; € RF? (Here we do not restrict f to lie in any finite-dimensional

subspace of functions.) The answer is: if and only if there exist g¢1,...,gm such
that
yi >y +9f (wp—w), 4, j=1,...,m. (6.19)
To see this, first suppose that f is convex, dom f = RF, and f(u;) = s,
1=1,...,m. At each u; we can find a vector g; such that
F(2) 2 flui) + g (2 —wi) (6.20)

for all z. If f is differentiable, we can take g; = V f(u;); in the more general case,

we can construct g; by finding a supporting hyperplane to epi f at (u;,y;). (The

vectors g; are called subgradients.) By applying (6.20) to z = u;, we obtain (6.19).
Conversely, suppose g1, . - ., g, satisfy (6.19). Define f as

f(z) = max (y;+ g/ (z —w))

for all z € R*. Clearly, f is a (piecewise-linear) convex function. The inequali-
ties (6.19) imply that f(u;) =y, fori=1,...,m.

We can use this result to solve several problems involving interpolation, approx-
imation, or bounding, with convex functions.

Fitting a convex function to given data

Perhaps the simplest application is to compute the least-squares fit of a convex
function to given data (u;,y;), i =1,...,m:

minimize Yo, (yi — f(wi))?
subject to  f: R® — R is convex, dom f = RF.

This is an infinite-dimensional problem, since the variable is f, which is in the
space of continuous real-valued functions on R”. Using the result above, we can
formulate this problem as

e e . m A \2
minimize )", (i — Ui)
subject to  §; > §; + g (uj —wi), i, j=1,...,m,

which is a QP with variables § € R™ and g¢1,...,¢m € R¥. The optimal value of
this problem is zero if and only if the given data can be interpolated by a convex
function, i.e., if there is a convex function that satisfies f(u;) = y;. An example is
shown in figure 6.24.

Bounding values of an interpolating convex function

As another simple example, suppose that we are given data (u;,y;), ¢ =1,...,m,
which can be interpolated by a convex function. We would like to determine the
range of possible values of f(ug), where ug is another point in R*, and f is any
convex function that interpolates the given data. To find the smallest possible
value of f(ug) we solve the LP

minimize  yo
subject to y; > y; + g (uj —w;), i, j=0,...,m,
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Figure 6.24 Least-squares fit of a convex function to data, shown as circles.
The (piecewise-linear) function shown minimizes the sum of squared fitting
error, over all convex functions.

which is an LP with variables yo € R, go, - - -, gm € R*. By maximizing y (which
is also an LP) we find the largest possible value of f(ug) for a convex function that
interpolates the given data.

Interpolation with monotone convex functions

As an extension of convex interpolation, we can consider interpolation with a convex
and monotone nondecreasing function. It can be shown that there exists a convex
function f : R* & R, with dom f = Rk, that satisfies the interpolation conditions

f(ui):yi, i:l,...,m,

and is monotone nondecreasing (i.e., f(u) > f(v) whenever u = v), if and only if
there exist g1,...,9m € R”, such that

gi>=0, i=1,...,m, yi >y ol (uj— ), i, j=1,....m.  (6.21)

In other words, we add to the convex interpolation conditions (6.19), the condition
that the subgradients g; are all nonnegative. (See exercise 6.12.)

Bounding consumer preference

As an application, we consider a problem of predicting consumer preferences. We
consider different baskets of goods, consisting of different amounts of n consumer
goods. A goods basket is specified by a vector z € [0,1]™ where z; denotes the
amount of consumer good i. We assume the amounts are normalized so that
0 <z <1, e, x; =0 is the minimum and z; = 1 is the maximum possible
amount of good i. Given two baskets of goods x and Z, a consumer can either
prefer x to &, or prefer T to x, or consider x and Z equally attractive. We consider
one model consumer, whose choices are repeatable.
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We model consumer preference in the following way. We assume there is an
underlying utility function u : R™ — R, with domain [0,1]"; u(x) gives a measure
of the utility derived by the consumer from the goods basket x. Given a choice
between two baskets of goods, the consumer chooses the one that has larger utility,
and will be ambivalent when the two baskets have equal utility. It is reasonable to
assume that v is monotone nondecreasing. This means that the consumer always
prefers to have more of any good, with the amounts of all other goods the same. It
is also reasonable to assume that u is concave. This models satiation, or decreasing
marginal utility as we increase the amount of goods.

Now suppose we are given some consumer preference data, but we do not know
the underlying utility function u. Specifically, we have a set of goods baskets

ai,...,am € 10,1]™, and some information about preferences among them:
u(a;) > u(a;) for (i,j) € P, u(a;) > u(a;) for (i,7) € Pweak, (6.22)
where P, Pyeax € {1,...,m} x{1,...,m} are given. Here P gives the set of known

preferences: (4, j) € P means that basket a; is known to be preferred to basket a;.
The set Pyeak gives the set of known weak preferences: (i) € Pyeax means that
basket a; is preferred to basket a;, or that the two baskets are equally attractive.
We first consider the following question: How can we determine if the given data
are consistent, i.e., whether or not there exists a concave nondecreasing utility
function w for which (6.22) holds? This is equivalent to solving the feasibility
problem
find u
subject to w: R"™ — R concave and nondecreasing
u(ai) > u(a;), (i,j) €P
u(a;) = ulay),  (5,7) € Pucai
with the function v as the (infinite-dimensional) optimization variable. Since the

constraints in (6.23) are all homogeneous, we can express the problem in the equiv-
alent form

(6.23)

find U

subject to u : R"™ — R concave and nondecreasing
uw(a;) > ula;) +1, (3,5) €P
u(ai) 2 U(aj)a (Zvj) € Puweak;

(6.24)

which uses only nonstrict inequalities. (It is clear that if u satisfies (6.24), then
it must satisfy (6.23); conversely, if u satisfies (6.23), then it can be scaled to
satisfy (6.24).) This problem, in turn, can be cast as a (finite-dimensional) linear
programming feasibility problem, using the interpolation result on page 339:

ﬁnd ULy -y Um,y G1y---59m
subject to ¢; =0, i=1,....m
u;j <wui+gf(a; —a;), i,j=1,...,m (6.25)

wp >u; +1, (i,7) € P
U; Z Uy, (’La]) € Pweak-

By solving this linear programming feasibility problem, we can determine whether
there exists a concave, nondecreasing utility function that is consistent with the
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given sets of strict and nonstrict preferences. If (6.25) is feasible, there is at least
one such utility function (and indeed, we can construct one that is piecewise-linear,
from a feasible uy,...,Um, g1,.-.,9m). If (6.25) is not feasible, we can conclude
that there is no concave increasing utility function that is consistent with the given
sets of strict and nonstrict preferences.

As an example, suppose that P and Pyeax are consumer preferences that are
known to be consistent with at least one concave increasing utility function. Con-
sider a pair (k,l) that is not in P or Pyeak, i.€., consumer preference between
baskets k and [ is not known. In some cases we can conclude that a preference
holds between basket k and [, even without knowing the underlying preference
function. To do this we augment the known preferences (6.22) with the inequality
u(ag) < u(a;), which means that basket [ is preferred to basket k, or they are
equally attractive. We then solve the feasibility linear program (6.25), including
the extra weak preference u(ay) < u(a;). If the augmented set of preferences is in-
feasible, it means that any concave nondecreasing utility function that is consistent
with the original given consumer preference data must also satisfy u(ar) > u(a;).
In other words, we can conclude that basket k is preferred to basket [, without
knowing the underlying utility function.

Example 6.9 Here we give a simple numerical example that illustrates the discussion
above. We consider baskets of two goods (so we can easily plot the goods baskets).
To generate the consumer preference data P, we compute 40 random points in [0, 1]2,
and then compare them using the utility function

w(zy, wo) = (L1z)/? + 0.82)/%)/1.9.

These goods baskets, and a few level curves of the utility function u, are shown in
figure 6.25.

We now use the consumer preference data (but not, of course, the true utility function
u) to compare each of these 40 goods baskets to the basket ap = (0.5, 0.5). For each
original basket a;, we solve the linear programming feasibility problem described
above, to see if we can conclude that basket ag is preferred to basket a;. Similarly,
we check whether we can conclude that basket a; is preferred to basket ag. For each
basket a;, there are three possible outcomes: we can conclude that ag is definitely
preferred to a;, that a; is definitely preferred to ao, or (if both LP feasibility problems
are feasible) that no conclusion is possible. (Here, definitely preferred means that the
preference holds for any concave nondecreasing utility function that is consistent with
the original given data.)

We find that 21 of the baskets are definitely rejected in favor of (0.5,0.5), and 14
of the baskets are definitely preferred. We cannot make any conclusion, from the
consumer preference data, about the remaining 5 baskets. These results are shown in
figure 6.26. Note that goods baskets below and to the left of (0.5,0.5) will definitely
be rejected in favor of (0.5,0.5), using only the monotonicity property of the utility
function, and similarly, those points that are above and to the right of (0.5,0.5) must
be preferred. So for these 17 points, there is no need to solve the feasibility LP (6.25).
Classifying the 23 points in the other two quadrants, however, requires the concavity
assumption, and solving the feasibility LP (6.25).
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Figure 6.25 Forty goods baskets ai,...,as0, shown as circles. The
0.1, 0.2,...,0.9 level curves of the true utility function u are shown as dashed

lines. This utility function is used to find the consumer preference data P

among the 40 baskets.
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Figure 6.26 Results of consumer preference analysis using the LP (6.25), for a
new goods basket ag = (0.5,0.5). The original baskets are displayed as open
circles if they are definitely rejected (u(ax) < u(ao)), as solid black circles
if they are definitely preferred (u(ax) > u(ao)), and as squares when no
conclusion can be made. The level curve of the underlying utility function,
that passes through (0.5,0.5), is shown as a dashed curve. The vertical and
horizontal lines passing through (0.5,0.5) divide [0, 1]? into four quadrants.

Points in the upper right quadrant must be preferred to (0.5,0.5), by the
monotonicity assumption on u. Similarly, (0.5,0.5) must be preferred to the
points in the lower left quadrant. For the points in the other two quadrants,

the results are not obvious.
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The robustness properties of approximations with different penalty functions were an-
alyzed by Huber [Hub64, Hub81], who also proposed the penalty function (6.4). The
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Exercises

Norm approximation and least-norm problems

6.1 Quadratic bounds for log barrier penalty. Let ¢ : R — R be the log barrier penalty
function with limit a > 0:

b(u) = { —a®log(1 — (u/a)?) |u| <a

00 otherwise.

Show that if u € R™ satisfies ||ul|c < @, then

hllf < 3 sy < SULle) 2.
=1

= g

This means that > ¢(u;) is well approximated by ||ull3 if ||ul|s is small compared to
a. For example, if ||ul|o/a = 0.25, then

lull3 < élui) < 1.033- [ulf3.
1=1

6.2 (1, l2-, and Lo -norm approximation by a constant vector. What is the solution of the
norm approximation problem with one scalar variable x € R,

minimize ||zl — b||,

for the ¢1-, £2-, and £oo-norms?

6.3 Formulate the following approximation problems as LPs, QPs, SOCPs, or SDPs. The
problem data are A € R™*™ and b € R™. The rows of A are denoted a .

a) Deadzone-linear penalty approzimation: minimize > . ¢(afx — b;), where
=1

st ={ Dy o JlZ0

luf —a  |u| > a,

where a > 0.

(b) Log-barrier penalty approzimation: minimize Z:il é(alz — b;), where

b(u) = { —a®log(1 — (u/a)?) |u| <a

00 lu| > a,

with a > 0.

¢) Huber penalty approzimation: minimize Y " é(al x — b;), where
Y =1

o) ={ ¥ =
=\ M@ul— M) |u > M,
with M > 0.

(d) Log-Chebyshev approzimation: minimize max;—1, . m |log(alz)—logb;|. We assume
b > 0. An equivalent convex form is

minimize ¢
subject to 1/t <alz/bi<t, i=1,...,m,

with variables x € R™ and ¢ € R, and domain R"™ x Ry .
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(e) Minimizing the sum of the largest k residuals:

minimize ZLI |T|[i]
subject to r = Ax — b,
where |r|q) > |rlg) = -+ > |7|pm] are the numbers |ri|, |72, ..., |rm| sorted in

decreasing order. (For k = 1, this reduces to {o-norm approximation; for k = m, it
reduces to ¢1-norm approximation.) Hint. See exercise 5.19.
6.4 A differentiable approzimation of €1-norm approzimation. The function ¢(u) = (u2+e)1/2,
with parameter € > 0, is sometimes used as a differentiable approximation of the absolute
value function |u|. To approximately solve the ¢1-norm approximation problem

minimize |[|Az — b||1, (6.26)
where A € R™*"™, we solve instead the problem
minimize Y", ¢(ai @ — b;), (6.27)

where a7 is the ith row of A. We assume rank A = n.

Let p* denote the optimal value of the ¢;-norm approximation problem (6.26). Let &
denote the optimal solution of the approximate problem (6.27), and let # denote the
associated residual, # = A% — b.

a) Show that p* > S 72 /(72 + €)'/2.
=1

(b) Show that
A . m N |’f’1|
14z = blly <p*+ > |7l <I—W :

i=1
(By evaluating the righthand side after computing &, we obtain a bound on how subop-
timal & is for the ¢1-norm approximation problem.)
6.5 Minimum length approximation. Consider the problem
minimize  length(z)
subject to  ||Az — b]| <€,
where length(z) = min{k | ; = 0 for ¢ > k}. The problem variable is z € R"; the
problem parameters are A € R™*"™, b € R™, and € > 0. In a regression context, we are

asked to find the minimum number of columns of A, taken in order, that can approximate
the vector b within e.

Show that this is a quasiconvex optimization problem.

6.6 Duals of some penalty function approximation problems. Derive a Lagrange dual for the
problem

minimize Y7 ¢(r;)

subject to r = Ax — b,
for the following penalty functions ¢ : R — R. The variables are z € R", r € R™.
(a) Deadzone-linear penalty (with deadzone width a = 1),

_10 ul <1
o) = { =1 |u| > 1.
(b) Huber penalty (with M = 1),

2
_Ju lul <1
o) = { 2Aul -1 |u| > 1.
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6.7

6.8

(¢) Log-barrier (with limit a = 1),
¢(u) = —log(1 —u’),  dom¢=(—1,1).
(d) Relative deviation from one,

o(u) = max{u,1/u} = { Qf/u Zi i

with dom¢ = R++.

Regularization and robust approximation

Bi-criterion optimization with Euclidean norms. We consider the bi-criterion optimization
problem
minimize (w.r.t. RY)  (]|Az — b|3, ||z]3),

where A € R™*™ has rank r, and b € R™. Show how to find the solution of each of the
following problems from the singular value decomposition of A,

A= Udiag(U)VT = ZUiUiUiT
i=1

(see §A.5.4).

(a) Tikhonov regularization: minimize || Az — b||3 + &||z||3.
(b) Minimize || Az — b||3 subject to ||z||3 = ~.
(¢) Maximize || Az — b||3 subject to [|z/|3 = v.

Here § and ~ are positive parameters.

Your results provide efficient methods for computing the optimal trade-off curve and the
set of achievable values of the bi-criterion problem.

Formulate the following robust approximation problems as LPs, QPs, SOCPs, or SDPs.
For each subproblem, consider the ¢1-, £2-, and the fo-norms.

(a) Stochastic robust approzimation with a finite set of parameter values, i.e., the sum-
of-norms problem
minimize Zi:l pillAiz — b||
where p = 0 and 17p = 1. (See §6.4.1.)
(b) Worst-case robust approzimation with coefficient bounds:
minimize sup ¢ 4 ||[Az — b
where
AZ{AERmxn |lz] §aij §uij, 1= 1,...,’I’I”L7 j:l,...,n}.

Here the uncertainty set is described by giving upper and lower bounds for the
components of A. We assume l;; < u;;.

(c) Worst-case robust approzimation with polyhedral uncertainty:
minimize sup,¢ 4 |[Az — b

where

A:{[Lh am]T | Ciai jdi, iZl,...,Tﬂ}.
The uncertainty is described by giving a polyhedron P; = {a; | Cia; < d;} of possible
values for each row. The parameters C; € RP**"™ d; € RP*, i =1,...,m, are given.
We assume that the polyhedra P; are nonempty and bounded.
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Function fitting and interpolation

Minimaz rational function fitting. Show that the following problem is quasiconvex:
. p(t:) _
minimize max — Y
i=1,...k | q(t;)

where
p(t) = ao+ art +ast® + -+ amt™,  q(t) =14 bit + - + but",
and the domain of the objective function is defined as
D ={(a,b) e R™" xR" | q(t) >0, a <t < S}

In this problem we fit a rational function p(t)/q(t) to given data, while constraining the
denominator polynomial to be positive on the interval [a, 8]. The optimization variables
are the numerator and denominator coefficients a;, b;. The interpolation points ¢; € [, 8],
and desired function values y;, i = 1,..., k, are given.

Fitting data with a concave nonnegative nondecreasing quadratic function. We are given
the data
1‘17"-7IN€RH7 yla-"7yN€R,

and wish to fit a quadratic function of the form
fl@)=(1/2)z" Pz +q"z +,

where P € S™, ¢ € R", and r € R are the parameters in the model (and, therefore, the
variables in the fitting problem).

Our model will be used only on the box B={z € R" |l <z < u}. You can assume that
l < u, and that the given data points x; are in this box.

We will use the simple sum of squared errors objective,

N

D () =),

=1

as the criterion for the fit. We also impose several constraints on the function f. First,
it must be concave. Second, it must be nonnegative on B, i.e., f(z) > 0 for all z € B.
Third, f must be nondecreasing on B, i.e., whenever z, Z € B satisfy z < Z, we have
f(2) < f(2).

Show how to formulate this fitting problem as a convex problem. Simplify your formula-
tion as much as you can.

Least-squares direction interpolation. Suppose Fi,...,F, : R* — RP, and we form the
linear combination F : R*¥ — RP?,

Fu)=z1Fi(u) + -+ znFn(u),

where z is the variable in the interpolation problem.

In this problem we require that Z(F(vj),q;) =0, j = 1,...,m, where g; are given vectors
in RP, which we assume satisfy ||gj||2 = 1. In other words, we require the direction of
F to take on specified values at the points v;. To ensure that F(v;) is not zero (which
makes the angle undefined), we impose the minimum length constraints ||F(v;)|l2 > e,
7 =1,...,m, where ¢ > 0 is given.

Show how to find & that minimizes ||2||?, and satisfies the direction (and minimum length)
conditions above, using convex optimization.

Interpolation with monotone functions. A function f : R®* — R is monotone nondecreas-
ing (with respect to RX) if f(u) > f(v) whenever u > v.
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(a) Show that there exists a monotone nondecreasing function f : R — R, that satisfies
fu)) =y; fori=1,...,m, if and only if

Yi > y; whenever u; > u;, ¢, j=1,...,m.

(b) Show that there exists a convex monotone nondecreasing function f : R* — R, with
dom f = R”, that satisfies flus) = y; for i = 1,...,m, if and only if there exist
gi € R*¥, i=1,...,m, such that

gi=0, i=1,...,m, ijyi—l—giT(uj—ui), i, j=1,...,m.

6.13 Interpolation with quasiconvex functions. Show that there exists a quasiconvex function
f: RF = R, that satisfies f(u;) = y; for i = 1,...,m, if and only if there exist g; € R¥,
i=1,...,m, such that

giT(u]- —u;) < —1 whenever y; <y;, 4, j=1,...,m.

6.14 [Nes00] Interpolation with positive-real functions. Suppose z1,...,zn € C are n distinct
points with |z;] > 1. We define Ky, as the set of vectors y € C™ for which there exists a
function f : C — C that satisfies the following conditions.

e [ is positive-real, which means it is analytic outside the unit circle (i.e., for |z| > 1),
and its real part is nonnegative outside the unit circle (Rf(z) > 0 for |z] > 1).

e f satisfies the interpolation conditions
f(z1) =y, f(22) =2, v J(zn) = Yn.
If we denote the set of positive-real functions as F, then we can express K, as
Konp={yeC"|3feF, yo = f(zx), k=1,...,n}.

(a) It can be shown that f is positive-real if and only if there exists a nondecreasing
function p such that for all z with |z| > 1,

610 +Z71
ei@ _ Z—l

F(2) = S f(o0) + / ap(6),

where i = v/—1 (see [KN77, page 389]). Use this representation to show that K,
is a closed convex cone.

(b) We will use the inner product R(2"y) between vectors z,y € C™, where 27 denotes
the complex conjugate transpose of x. Show that the dual cone of Ky, is given by

n —i6 | =—1
" n e +Z
Knp:{mec %(1T1‘):0, %(E xlew—zz_1> >0v9€[0,2ﬂ]}

=1

(¢) Show that

Krtp:{xec" 3Q6H17 $ZZZQki_1,l:1,_“7n}

where H} denotes the set of positive semidefinite Hermitian matrices of size n x n.

Use the following result (known as Riesz-Fejér theorem; see [KN77, page 60]). A

function of the form
n

Z(yke—ikB + gkeike)

k=0
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is nonnegative for all @ if and only if there exist ao,...,an € C such that
n n 2
Z(ykeilkg + gkesz) _ Z akezke
k=0 k=0

Show that Kn, = {y € C" | P(y) = 0} where P(y) € H" is defined as

L
Py)u = —2T0

=S Th k=1, n
1—z 'zt

The matrix P(y) is called the Nevanlinna-Pick matriz associated with the points
2k Yk-
Hint. As we noted in part (a), Kyp is a closed convex cone, so Knp = Kp5.

As an application, pose the following problem as a convex optimization problem:

minimize ZZ:l | (21) — wi?
subject to f € F.

The problem data are n points z; with |zx| > 1 and n complex numbers wi, ...,
wy. We optimize over all positive-real functions f.
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Chapter 7

Statistical estimation

Parametric distribution estimation

Maximum likelihood estimation

We consider a family of probability distributions on R™, indexed by a vector
z € R", with densities p,(-). When considered as a function of z, for fixed y € R™,
the function p,(y) is called the likelihood function. It is more convenient to work
with its logarithm, which is called the log-likelihood function, and denoted I:

l(l‘) = Ing;E(y)'

There are often constraints on the values of the parameter x, which can repre-
sent prior knowledge about z, or the domain of the likelihood function. These
constraints can be explicitly given, or incorporated into the likelihood function by
assigning p,(y) = 0 (for all y) whenever x does not satisfy the prior information
constraints. (Thus, the log-likelihood function can be assigned the value —co for
parameters x that violate the prior information constraints.)

Now consider the problem of estimating the value of the parameter x, based
on observing one sample y from the distribution. A widely used method, called
mazimum likelihood (ML) estimation, is to estimate x as

&m1 = argmax,p,(y) = argmax_l(z),

i.e., to choose as our estimate a value of the parameter that maximizes the like-
lihood (or log-likelihood) function for the observed value of y. If we have prior
information about z, such as x € C C R", we can add the constraint x € C
explicitly, or impose it implicitly, by redefining p.(y) to be zero for = & C.

The problem of finding a maximum likelihood estimate of the parameter vector
x can be expressed as

maximize I(z) = logp.(y)

subject to x € C, (7.1)

where x € C gives the prior information or other constraints on the parameter
vector z. In this optimization problem, the vector € R" (which is the parameter
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in the probability density) is the variable, and the vector y € R™ (which is the
observed sample) is a problem parameter.

The maximum likelihood estimation problem (7.1) is a convex optimization
problem if the log-likelihood function [ is concave for each value of y, and the set
C' can be described by a set of linear equality and convex inequality constraints, a
situation which occurs in many estimation problems. For these problems we can
compute an ML estimate using convex optimization.

Linear measurements with 11D noise

We consider a linear measurement model,
T .
y=a;r+v, t=1...,m,

where x € R" is a vector of parameters to be estimated, y; € R are the measured
or observed quantities, and v; are the measurement errors or noise. We assume
that v; are independent, identically distributed (IID), with density p on R. The
likelihood function is then

so the log-likelihood function is
l(w) =logp,(y) = > _logp(y: — a] x).
i=1

The ML estimate is any optimal point for the problem
maximize Y . logp(y; —alz), (7.2)

with variable x. If the density p is log-concave, this problem is convex, and has the
form of a penalty approximation problem ((6.2), page 294), with penalty function

—logp.

Example 7.1 ML estimation for some common noise densities.

o Gaussian noise. When v; are Gaussian with zero mean and variance o2, the

71/267%/202

density is p(z) = (270?) , and the log-likelihood function is

1
l(x) =—(m/2) log(27ra2) - ﬁHAx - y||§7

where A is the matrix with rows af,...,al,. Therefore the ML estimate of
x is xm = argmin, [|[Az — y||3, the solution of a least-squares approximation
problem.

e Laplacian noise. When v; are Laplacian, i.e., have density p(z) = (1/2a)e_|z|/“
(where a > 0), the ML estimate is £ = argmin,, ||Az — y||1, the solution of the
{1-norm approximation problem.

o

e Uniform noise. When v; are uniformly distributed on [—a, a], we have p(z) =
1/(2a) on [—a,a], and an ML estimate is any x satisfying ||Az — y||c < a.
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ML interpretation of penalty function approximation

Conversely, we can interpret any penalty function approximation problem
minimize Y -, ¢(b; — al'z)
as a maximum likelihood estimation problem, with noise density

B e—¢(2)
p(Z)— f67¢(u) du’

and measurements b. This observation gives a statistical interpretation of the
penalty function approximation problem. Suppose, for example, that the penalty
function ¢ grows very rapidly for large values, which means that we attach a very
large cost or penalty to large residuals. The corresponding noise density function
p will have very small tails, and the ML estimator will avoid (if possible) estimates
with any large residuals because these correspond to very unlikely events.

We can also understand the robustness of £;-norm approximation to large errors
in terms of maximum likelihood estimation. We interpret ¢;-norm approximation
as maximum likelihood estimation with a noise density that is Laplacian; £2-norm
approximation is maximum likelihood estimation with a Gaussian noise density.
The Laplacian density has larger tails than the Gaussian, i.e., the probability of a
very large v; is far larger with a Laplacian than a Gaussian density. As a result,
the associated maximum likelihood method expects to see greater numbers of large
residuals.

Counting problems with Poisson distribution

In a wide variety of problems the random variable y is nonnegative integer valued,
with a Poisson distribution with mean g > 0:

e’“uk
k!

prob(y = k) =

Often y represents the count or number of events (such as photon arrivals, traffic
accidents, etc.) of a Poisson process over some period of time.

In a simple statistical model, the mean p is modeled as an affine function of a
vector u € R™:

p=alu+b.

Here u is called the vector of explanatory variables, and the vector a € R"™ and
number b € R are called the model parameters. For example, if y is the number
of traffic accidents in some region over some period, u; might be the total traffic
flow through the region during the period, us the rainfall in the region during the
period, and so on.

We are given a number of observations which consist of pairs (u;,y;), ¢ =
1,...,m, where y; is the observed value of y for which the value of the explanatory
variable is u; € R". Our job is to find a maximum likelihood estimate of the model
parameters a € R"™ and b € R from these data.
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The likelihood function has the form

)

ﬁ (aTu; + b)¥i exp(—(aTu; + b))
i=1 vi!
so the log-likelihood function is

m

l(a,b) = (yilog(a"u; +b) — (a”u; + b) — log(y:!)).

i=1
We can find an ML estimate of a and b by solving the convex optimization problem
maximize Y ., (y; log(a”u; +b) — (aTu; + 1)),

where the variables are a and b.

Logistic regression

We consider a random variable y € {0,1}, with

prob(y = 1) = p, prob(y =0) =1—p,

where p € [0,1], and is assumed to depend on a vector of explanatory variables
u € R". For example, y = 1 might mean that an individual in a population acquires
a certain disease. The probability of acquiring the disease is p, which is modeled
as a function of some explanatory variables u, which might represent weight, age,
height, blood pressure, and other medically relevant variables.

The logistic model has the form

~ exp(a’u+0b)
1 +exp(aTu+b)’

(7.3)

where a € R™ and b € R are the model parameters that determine how the
probability p varies as a function of the explanatory variable w.

Now suppose we are given some data consisting of a set of values of the explana-
tory variables u, ..., u, € R™ along with the corresponding outcomes y1, . .., Ym €
{0,1}. Our job is to find a maximum likelihood estimate of the model parameters
a € R" and b € R. Finding an ML estimate of a and b is sometimes called logistic
regression.

We can re-order the data so for ui,...,uq, the outcome is y = 1, and for
Ug+1, - - -, Um the outcome is y = 0. The likelihood function then has the form
q m
i=1 =g+l

where p; is given by the logistic model with explanatory variable u;. The log-
likelihood function has the form

q m
l(a,b) = Zlogpi—&— Z log(1 — p;)
i=1

1=q+1



7.1 Parametric distribution estimation

355

1r o 0 O  0O0OOO O GI>COAMAO O
0.8r ]
=
Il 0.6r 1
2
Q
S 04 —
o
0.2r ]
0 0 O COGID WO @ED O O O o B
0 2 4 6 8 10
u

Figure 7.1 Logistic regression. The circles show 50 points (us,y:), where
u; € R is the explanatory variable, and y; € {0,1} is the outcome. The
data suggest that for u < 5 or so, the outcome is more likely to be y = 0,
while for u > 5 or so, the outcome is more likely to be y = 1. The data
also suggest that for u < 2 or so, the outcome is very likely to be y = 0,
and for v > 8 or so, the outcome is very likely to be y = 1. The solid
curve shows prob(y = 1) = exp(au+b)/(1 + exp(au + b)) for the maximum
likelihood parameters a, b. This maximum likelihood model is consistent
with our informal observations about the data set.

exp(a®u; + b) “ 1
1 1
e exp(aTu; + b) + i:zq;_l BTy exp(aTu; + b)

M- 11

Il
-

(aTu; 4+ b) — Z log(1 + exp(a®u; + b)).

[ =1

Since [ is a concave function of a and b, the logistic regression problem can be solved
as a convex optimization problem. Figure 7.1 shows an example with u € R.
Covariance estimation for Gaussian variables

Suppose y € R" is a Gaussian random variable with zero mean and covariance
matrix R = Eyy’, so its density is

pr(y) = (2m) "2 det(R) /2 exp(—y" R™1y/2),

where R € S’ ,. We want to estimate the covariance matrix R based on N in-
dependent samples y1,...,yny € R"™ drawn from the distribution, and using prior
knowledge about R.

The log-likelihood function has the form

Z(R) = 1ngR(y1a'~'ayN)



356

7 Statistical estimation

=

= —(Nn/2)log(2m) — (N/2)logdet R — (1/2) > y{ R 'y
k=1
= —(Nn/2)log(2m) — (N/2)logdet R — (N/2) tr(R™'Y),

where
| XN
_ T
Y= N kgl YkYk

is the sample covariance of y, ..., yny. This log-likelihood function is not a concave
function of R (although it is concave on a subset of its domain S} | ; see exercise 7.4),
but a change of variable yields a concave log-likelihood function. Let S denote the
inverse of the covariance matrix, S = R~! (which is called the information matriz).
Using S in place of R as a new parameter, the log-likelihood function has the form

1(S) = =(Nn/2)log(2m) + (N/2)logdet S — (N/2) tr(SY),

which ¢s a concave function of S.
Therefore the ML estimate of S (hence, R) is found by solving the problem

maximize logdetS — tr(SY) (7.4)
subject to S €S '
where S is our prior knowledge of S = R™!. (We also have the implicit constraint
that S € S’ ,.) Since the objective function is concave, this is a convex problem
if the set S can be described by a set of linear equality and convex inequality
constraints.

First we examine the case in which no prior assumptions are made on R (hence,
S), other than R > 0. In this case the problem (7.4) can be solved analytically. The
gradient of the objective is S~! —Y, so the optimal S satisfies S~' =Y if Y € St
(If Y ¢ S' ., the log-likelihood function is unbounded above.) Therefore, when
we have no prior assumptions about R, the maximum likelihood estimate of the
covariance is, simply, the sample covariance: Ru =Y.

Now we consider some examples of constraints on R that can be expressed as
convex constraints on the information matrix S. We can handle lower and upper
(matrix) bounds on R, of the form

L<R=U,
where L and U are symmetric and positive definite, as
U'<R'<L"
A condition number constraint on R,
Amax(R) < FmaxAmin (1),

can be expressed as
)\max(S) S Kmax)\min(s)-
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This is equivalent to the existence of u > 0 such that ul < S < Kpaxul. We can
therefore solve the ML problem, with the condition number constraint on R, by
solving the convex problem

maximize logdet S — tr(SY)

subject to ul =S = Kpaxul (7.5)

where the variables are S € S and u € R.
As another example, suppose we are given bounds on the variance of some linear
functions of the underlying random vector y,

E(c'y)?<a; i=1,...,K.
These prior assumptions can be expressed as
E(cly)? =c/Rei=clS7'¢; <y, i=1,...,K.

Since ¢I'S~!¢; is a convex function of S (provided S > 0, which holds here), these
bounds can be imposed in the ML problem.

Maximum a posteriori probability estimation

Maximum a posteriori probability (MAP) estimation can be considered a Bayesian
version of maximum likelihood estimation, with a prior probability density on the
underlying parameter . We assume that x (the vector to be estimated) and y (the
observation) are random variables with a joint probability density p(z,y). This
is in contrast to the statistical estimation setup, where = is a parameter, not a
random variable.

The prior density of x is given by

palz) = / P, y) dy.

This density represents our prior information about what the values of the vector x
might be, before we observe the vector y. Similarly, the prior density of y is given
by

py(y) = /p(x, y) dx.

This density represents the prior information about what the measurement or ob-
servation vector y will be.
The conditional density of y, given z, is given by

p(z,y)

pz(2)

In the MAP estimation method, p,|, plays the role of the parameter dependent
density p, in the maximum likelihood estimation setup. The conditional density
of x, given y, is given by

py|m(xa y) =

~

Pa(T
Py (y) .

px\y(mvy) = w = py\ac(x7y)




358

7 Statistical estimation

When we substitute the observed value y into p,,, we obtain the posterior density
of x. It represents our knowledge of x after the observation.

In the MAP estimation method, our estimate of x, given the observation y, is
given by

imap - argmaxmpﬂy(xa y)
argmax,py|. (, y)pa ()

argmax,p(z,y).

In other words, we take as estimate of x the value that maximizes the conditional
density of x, given the observed value of y. The only difference between this
estimate and the maximum likelihood estimate is the second term, p,(z), appearing
here. This term can be interpreted as taking our prior knowledge of x into account.
Note that if the prior density of x is uniform over a set C, then finding the MAP
estimate is the same as maximizing the likelihood function subject to x € C, which
is the ML estimation problem (7.1).
Taking logarithms, we can express the MAP estimate as

:imap = argmaxz(logpmw(xa y) + logpm(x)) (76)

The first term is essentially the same as the log-likelihood function; the second
term penalizes choices of x that are unlikely, according to the prior density (i.e., x
with p,(x) small).

Brushing aside the philosophical differences in setup, the only difference between
finding the MAP estimate (via (7.6)) and the ML estimate (via (7.1)) is the presence
of an extra term in the optimization problem, associated with the prior density of
x. Therefore, for any maximum likelihood estimation problem with concave log-
likelihood function, we can add a prior density for x that is log-concave, and the
resulting MAP estimation problem will be convex.

Linear measurements with 1ID noise

Suppose that z € R" and y € R are related by
yi:aiTx+vi7 t=1,...,m,

where v; are IID with density p, on R, and x has prior density p, on R". The
joint density of x and y is then

m

p(x,y) = po(@) [ [ po(ys — af 2),

i=1
and the MAP estimate can be found by solving the optimization problem
maximize logp,(x) + > v, logp,(y; — al z). (7.7)

If p, and p, are log-concave, this problem is convex. The only difference between
the MAP estimation problem (7.7) and the associated ML estimation problem (7.2)
is the extra term log p, ().
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For example, if v; are uniform on [—a,a], and the prior distribution of z is
Gaussian with mean Z and covariance Y, the MAP estimate is found by solving
the QP

minimize (x —z)TY (2 — 7)
subject to  ||Az — Y|l < a,

with variable z.

MAP with perfect linear measurements

Suppose x € R"™ is a vector of parameters to be estimated, with prior density
p. We have m perfect (noise free, deterministic) linear measurements, given by
y = Az. In other words, the conditional distribution of y, given z, is a point mass
with value one at the point Az. The MAP estimate can be found by solving the
problem

maximize logp,(z)

subject to Az =y.

If p, is log-concave, this is a convex problem.
If under the prior distribution, the parameters x; are IID with density p on R,
then the MAP estimation problem has the form

maximize .., logp(x;)
subject to Ax =y,

which is a least-penalty problem ((6.6), page 304), with penalty function ¢(u) =

—log p(u).
Conversely, we can interpret any least-penalty problem,

minimize  ¢(z1) + - + d(zn)
subject to Ax =15

as a MAP estimation problem, with m perfect linear measurements (i.e., Az = b)
and z; IID with density
e~ %(2)

PE) = T oot qu

Nonparametric distribution estimation

We consider a random variable X with values in the finite set {aq,...,a,} C R.
(We take the values to be in R for simplicity; the same ideas can be applied when
the values are in RF, for example.) The distribution of X is characterized by
p € R", with prob(X = a;) = pi,. Clearly, p satisfies p = 0, 17p = 1. Conversely,
if p € R™ satisfies p = 0, 17p = 1, then it defines a probability distribution for a
random variable X, defined as prob(X = «aj) = pr. Thus, the probability simplex

{peR"|p=0, 1Tp=1}
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is in one-to-one correspondence with all possible probability distributions for a
random variable X taking values in {aq,...,a,}.

In this section we discuss methods used to estimate the distribution p based on
a combination of prior information and, possibly, observations and measurements.

Prior information

Many types of prior information about p can be expressed in terms of linear equality
constraints or inequalities. If f: R — R is any function, then

Ef(X)= sz‘f(@z’)

is a linear function of p. As a special case, if C' C R, then prob(X € C) is a linear
function of p:

1 o€l

0 (67 ¢ C.

It follows that known expected values of certain functions (e.g., moments) or known
probabilities of certain sets can be incorporated as linear equality constraints on
p € R". Inequalities on expected values or probabilities can be expressed as linear
inequalities on p € R".

For example, suppose we know that X has mean EX = «, second moment
E X2 = 3, and prob(X > 0) < 0.3. This prior information can be expressed as

prob(X € C) = ¢Tp, ¢ = {

EX:iOéipizm EXQZia?pi:@ Zpig()'&
i=1

i=1 ;>0

which are two linear equalities and one linear inequality in p.
We can also include some prior constraints that involve nonlinear functions of
p. As an example, the variance of X is given by

n n 2
var(X):EXzf(EX)Z:Za?pif (Zaim) .
i=1 i=1

The first term is a linear function of p and the second term is concave quadratic
in p, so the variance of X is a concave function of p. It follows that a lower bound
on the variance of X can be expressed as a convex quadratic inequality on p.

As another example, suppose A and B are subsets of R, and consider the
conditional probability of A given B:

prob(X € AN B)

b(X € A|X € B) =
prob(X € A[X € B) prob(X € B)

This function is linear-fractional in p € R™: it can be expressed as
prob(X € A|X € B) =c"p/d"p,
where

o 1 ;€ ANB d — 1 o, €B
“T10 ;¢ ANB =10 a¢B.
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Therefore we can express the prior constraints
I <prob(X € A|IX e B)<u
as the linear inequality constraints on p
d"p < ''p < ud®p.

Several other types of prior information can be expressed in terms of nonlinear
convex inequalities. For example, the entropy of X, given by

n
—> pilogp;,
i=1

is a concave function of p, so we can impose a minimum value of entropy as a convex
inequality on p. If ¢ represents another distribution, i.e., ¢ = 0, 17¢ = 1, then
the Kullback-Leibler divergence between the distribution ¢ and the distribution p
is given by

> pilog(pi/a),
=1

which is convex in p (and ¢ as well; see example 3.19, page 90). It follows that
we can impose a maximum Kullback-Leibler divergence between p and a given
distribution ¢, as a convex inequality on p.

In the next few paragraphs we express the prior information about the distribu-
tion p as p € P. We assume that P can be described by a set of linear equalities and
convex inequalities. We include in the prior information P the basic constraints
p>=0,1Tp=1.

Bounding probabilities and expected values

Given prior information about the distribution, say p € P, we can compute upper
or lower bounds on the expected value of a function, or probability of a set. For
example to determine a lower bound on E f(X) over all distributions that satisfy
the prior information p € P, we solve the convex problem

minimize Z?:l flai)p;
subject to p € P.

Maximum likelihood estimation

We can use maximum likelihood estimation to estimate p based on observations
from the distribution. Suppose we observe N independent samples x1, ..., xy from
the distribution. Let k; denote the number of these samples with value «;, so that
ki + ---+ k, = N, the total number of observed samples. The log-likelihood
function is then

I(p) =Y kilogpi,
=1
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which is a concave function of p. The maximum likelihood estimate of p can be
found by solving the convex problem

maximize I(p) = > ., k;logp;
subject to p € P,

with variable p.

Maximum entropy

The maximum entropy distribution consistent with the prior assumptions can be
found by solving the convex problem

o . . n
minimize Zi:l pilogp;
subject to p € P.

Enthusiasts describe the maximum entropy distribution as the most equivocal or
most random, among those consistent with the prior information.

Minimum Kullback-Leibler divergence

We can find the distribution p that has minimum Kullback-Leibler divergence from
a given prior distribution ¢, among those consistent with prior information, by
solving the convex problem

minimize Y7 p; log(pi/q;)
subject to p € P,

Note that when the prior distribution is the uniform distribution, i.e., ¢ = (1/n)1,
this problem reduces to the maximum entropy problem.

Example 7.2 We consider a probability distribution on 100 equidistant points «; in
the interval [—1,1]. We impose the following prior assumptions:

EX € [-0.1,0.1]
EX? € [0.50.6]
E(3X®-2X) € [-0.3,-0.2] (7.8)
prob(X <0) € [0.3,0.4].

Along with the constraints 1Tp = 1, p = 0, these constraints describe a polyhedron
of probability distributions.

Figure 7.2 shows the maximum entropy distribution that satisfies these constraints.
The maximum entropy distribution satisfies

EX = 0.056

EX?> = 05
E(BX%*-2X) = -02
prob(X <0) = 04.

To illustrate bounding probabilities, we compute upper and lower bounds on the
cumulative distribution prob(X < «;), for ¢ = 1,...,100. For each value of 1,
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Figure 7.2 Maximum entropy distribution that satisfies the constraints (7.8).

we solve two LPs: one that maximizes prob(X < «;), and one that minimizes
prob(X < «;), over all distributions consistent with the prior assumptions (7.8).
The results are shown in figure 7.3. The upper and lower curves show the upper and
lower bounds, respectively; the middle curve shows the cumulative distribution of the
maximum entropy distribution.

Example 7.3 Bounding risk probability with known marginal distributions. Suppose X
and Y are two random variables that give the return on two investments. We assume
that X takes values in {a1,...,a,} C R and Y takes values in {f1,...,8n} C R,
with p;; = prob(X = «;,Y = ;). The marginal distributions of the two returns X
and Y are known, i.e.,

Zpij:’m, izl,...,n, Zpij:qj, j:].,,,.,m, (79)
Jj=1 i=1

but otherwise nothing is known about the joint distribution p. This defines a poly-
hedron of joint distributions consistent with the given marginals.

Now suppose we make both investments, so our total return is the random variable
X +Y. We are interested in computing an upper bound on the probability of some
level of loss, or low return, i.e., prob(X +Y < 7). We can compute a tight upper
bound on this probability by solving the LP

maximize Y {pi; | 2 + B85 <~}
subject to  (7.9), p;; >0, i=1,...n, j=1,...,m.

The optimal value of this LP is the maximum probability of loss. The optimal
solution p* is the joint distribution, consistent with the given marginal distributions,
that maximizes the probability of the loss.

The same method can be applied to a derivative of the two investments. Let R(X,Y")
be the return of the derivative, where R : R> — R. We can compute sharp lower
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7.3

0.4r |

prob(X < ;)

—1 —0.5 0 0.5 1
a;

Figure 7.3 The top and bottom curves show the maximum and minimum
possible values of the cumulative distribution function, prob(X < «;), over
all distributions that satisfy (7.8). The middle curve is the cumulative dis-
tribution of the maximum entropy distribution that satisfies (7.8).

and upper bounds on prob(R < 7) by solving a similar LP, with objective function

> Api | Rlei, B)) <}

which we can minimize and maximize.

Optimal detector design and hypothesis testing

Suppose X is a random variable with values in {1,...,n}, with a distribution that
depends on a parameter 6 € {1,...,m}. The distributions of X, for the m possible
values of #, can be represented by a matrix P € R™*™, with elements

pr; = prob(X =k |0 =j).

The jth column of P gives the probability distribution associated with the param-
eter value 6 = j.

We consider the problem of estimating 6, based on an observed sample of X. In
other words, the sample X is generated from one of the m possible distributions,
and we are to guess which one. The m values of 8 are called hypotheses, and guessing
which hypothesis is correct (i.e., which distribution generated the observed sample
X) is called hypothesis testing. In many cases one of the hypotheses corresponds
to some normal situation, and each of the other hypotheses corresponds to some
abnormal event. In this case hypothesis testing can be interpreted as observing a
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value of X, and then guessing whether or not an abnormal event has occurred, and
if so, which one. For this reason hypothesis testing is also called detection.

In most cases there is no significance to the ordering of the hypotheses; they are
simply m different hypotheses, arbitrarily labeled § = 1,...,m. If 6 = 0, where 0
denotes the estimate of 8, then we have correctly guessed the parameter value 6. If
0 # 6, then we have (incorrectly) guessed the parameter value 0; we have mistaken
6 for 6. In other cases, there is significance in the ordering of the hypotheses. In this
case, an event such as 6> 0, i.e., the event that we overestimate 6, is meaningful.

It is also possible to parametrize 6 by values other than {1,...,m}, say as 6 €
{61,...,0m}, where 6; are (distinct) values. These values could be real numbers, or
vectors, for example, specifying the mean and variance of the kth distribution. In
this case, a quantity such as || — 6||, which is the norm of the parameter estimation
error, is meaningful.

Deterministic and randomized detectors

A (deterministic) estimator or detector is a function ¢ from {1,...,n} (the set of
possible observed values) into {1,...,m} (the set of hypotheses). If X is observed
to have value k, then our guess for the value of 6 is = (k). One obvious
deterministic detector is the mazimum likelihood detector, given by

0 = Yumi(k) = argmax py;. (7.10)
J
When we observe the value X = k, the maximum likelihood estimate of 6 is a
value that maximizes the probability of observing X = k, over the set of possible
distributions.

We will consider a generalization of the deterministic detector, in which the
estimate of 0, given an observed value of X, is random. A randomized detector
of 6 is a random variable § € {1,...,m}, with a distribution that depends on the
observed value of X. A randomized detector can be defined in terms of a matrix
T ¢ R™*" with elements

tix =prob(d =i | X =k).

The interpretation is as follows: if we observe X = k, then the detector gives 6=i
with probability ¢;5. The kth column of T, which we will denote tg, gives the
probability distribution of é, when we observe X = k. If each column of T is a
unit vector, then the randomized detector is a deterministic detector, i.e., 0 is a
(deterministic) function of the observed value of X.

At first glance, it seems that intentionally introducing additional randomiza-
tion into the estimation or detection process can only make the estimator worse.
But we will see below examples in which a randomized detector outperforms all
deterministic estimators.

We are interested in designing the matrix 7" that defines the randomized detec-
tor. Obviously the columns ¢ of T must satisfy the (linear equality and inequality)
constraints

t = 0, 174, = 1. (7.11)
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Detection probability matrix

For the randomized detector defined by the matrix T, we define the detection
probability matriz as D = T P. We have

D;; = (TP);; = prob(f =i | 0 = j),

so D;; is the probability of guessing 6 = i, when in fact # = j. The m x m
detection probability matrix D characterizes the performance of the randomized
detector defined by 7. The diagonal entry D;; is the probability of guessing 6=i
when 6 = i, i.e., the probability of correctly detecting that § = i. The off-diagonal
entry D;; (with ¢ # j) is the probability of mistaking § = i for § = j, i.e., the
probability that our guess is 6 = i, when in fact § = j. If D = I, the detector is
perfect: no matter what the parameter 6 is, we correctly guess 6=0.

The diagonal entries of D, arranged in a vector, are called the detection proba-
bilities, and denoted P9:
PY = D;; =prob(d =i |0 =1).

K3

The error probabilities are the complements, and are denoted P°:

Pf=1-D;; =prob(f #i|0=1).
Since the columns of the detection probability matrix D add up to one, we can
express the error probabilities as

PP =Y "Djs.

J#

Optimal detector design

In this section we show that a wide variety of objectives for detector design are
linear, affine, or convex piecewise-linear functions of D, and therefore also of T
(which is the optimization variable). Similarly, a variety of constraints for detector
design can be expressed in terms of linear inequalities in D. It follows that a wide
variety of optimal detector design problems can be expressed as LPs. We will see
in §7.3.4 that some of these LPs have simple solutions; in this section we simply
formulate the problem.

Limits on errors and detection probabilities

We can impose a lower bound on the probability of correctly detecting the jth
hypothesis,
d
Py = Dj; 2 Ly,

which is a linear inequality in D (hence, T'). Similarly, we can impose a maximum
allowable probability for mistaking 6 = i for 0 = j:

D;; < Uy,
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which are also linear constraints on 7. We can take any of the detection prob-
abilities as an objective to be maximized, or any of the error probabilities as an
objective to be minimized.

Minimax detector design

We can take as objective (to be minimized) the minimaz error probability, max; P?,
which is a piecewise-linear convex function of D (hence, also of T'). With this as
the only objective, we have the problem of minimizing the maximum probability
of detection error,

minimize max; P]‘-’
subject to t, =0, 1Tty =1, k=1,...,n,

where the variables are ti,...,t, € R™. This can be reformulated as an LP. The
minimax detector minimizes the worst-case (largest) probability of error over all m
hypotheses.

We can, of course, add further constraints to the minimax detector design prob-
lem.

Bayes detector design

In Bayes detector design, we have a prior distribution for the hypotheses, given by
g € R™, where
g; = prob(6 = i).

In this case, the probabilities p;; are interpreted as conditional probabilities of X,
given 6. The probability of error for the detector is then given by ¢ P¢, which is
an affine function of T. The Bayes optimal detector is the solution of the LP

minimize ¢7 P°
subject to t, =0, 1Tt =1, k=1,...,n.

We will see in §7.3.4 that this problem has a simple analytical solution.

One special case is when ¢ = (1/m)1. In this case the Bayes optimal detector
minimizes the average probability of error, where the (unweighted) average is over
the hypotheses. In §7.3.4 we will see that the maximum likelihood detector (7.10)
is optimal for this problem.

Bias, mean-square error, and other quantities

In this section we assume that the ordering of the values of 6 have some significance,
i.e., that the value 8 = 7 can be interpreted as a larger value of the parameter than
0 = j, when i > j. This might be the case, for example, when § = i corresponds to
the hypothesis that ¢ events have occurred. Here we may be interested in quantities
such as

prob(d > 0|6 =),

which is the probability that we overestimate # when # = 4. This is an affine
function of D: X
prob(f > 0|0 =1i)=> Dy,

j>i
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so a maximum allowable value for this probability can be expressed as a linear
inequality on D (hence, T'). As another example, the probability of misclassifying
0 by more than one, when 6 = i,

prob(|d — 0] > 1|0 =1i) = Z Dy,
lj—i>1

is also a linear function of D.

We now suppose that the parameters have values {61,...,0,,} C R. The es-
timation or detection (parameter) error is then given by 6 — 6, and a number of
quantities of interest are given by linear functions of D. Examples include:

e Bias. The bias of the detector, when 6 = 6,, is given by the linear function

m

E(0—0) =) (0; — 0:)Djs,

Jj=1

where the subscript on E means the expectation is with respect to the dis-
tribution of the hypothesis 6 = 6;.

e Mean square error. The mean square error of the detector, when 6 = 6;, is
given by the linear function

E() —0)* = i(gj —0:;)*Dj;.

j=1

e Average absolute error. The average absolute error of the detector, when
0 = 0;, is given by the linear function

E 6—61=>16; — 6:|D;;.
j=1

Multicriterion formulation and scalarization

The optimal detector design problem can be considered a multicriterion problem,
with the constraints (7.11), and the m(m — 1) objectives given by the off-diagonal
entries of D, which are the probabilities of the different types of detection error:

minimize (w.r.t. RT(mil)) Dij, i, j=1,....m, i#] (7.12)
subject to th =0, 1Tty =1, k=1,...,n, '
with variables ¢1,...,t, € R™. Since each objective D;; is a linear function of the

variables, this is a multicriterion linear program.
We can scalarize this multicriterion problem by forming the weighted sum ob-
jective
m
Z WijDij = tI’(WTD)

4,j=1
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where the weight matrix W € R™*™ satisfies
Wii=0, i=1,...,m, Wi; >0, 4, j=1,....m, i#j.

This objective is a weighted sum of the m(m — 1) error probabilities, with weight
W;; associated with the error of guessing 0 = i when in fact § = j. The weight
matrix is sometimes called the loss matriz.

To find a Pareto optimal point for the multicriterion problem (7.12), we form
the scalar optimization problem

minimize  tr(W7 D)

. T (7.13)
subject to tp >~ 0, 1'tx =1, k=1,...,n,
which is an LP. This LP is separable in the variables t1,...,t,. The objective can
be expressed as a sum of (linear) functions of ¢j:

tr(W''D) = tr(W'TP) = tr(PW'T) = > cfty,
k=1

where ¢y, is the kth column of W PT. The constraints are separable (i.e., we have
separate constraints on each ¢;). Therefore we can solve the LP (7.13) by separately
solving

minimize cztk

subject to t, =0, 1Tt, =1,

for k = 1,...,n. Each of these LPs has a simple analytical solution (see exer-
cise 4.8). We first find an index ¢ such that ¢z = min; cx;. Then we take ¢} = eq.
This optimal point corresponds to a deterministic detector: when X = k is ob-
served, our estimate is

0 = argmin(W P7) ;.. (7.14)
J

Thus, for every weight matrix W with positive off-diagonal elements we can find
a deterministic detector that minimizes the weighted sum objective. This seems
to suggest that randomized detectors are not needed, but we will see this is not
the case. The Pareto optimal trade-off surface for the multicriterion LP (7.12) is
piecewise-linear; the deterministic detectors of the form (7.14) correspond to the
vertices on the Pareto optimal surface.

MAP and ML detectors

Consider a Bayes detector design with prior distribution g. The mean probability

of error is
¢"P° =Y "q;Y Dij=> Wi;Dy,

i=l i i.j=1

if we define the weight matrix W as

Wij:qj, i7j:1,...,m, Z;’éj, Wiizo, i:L...,m.
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Thus, a Bayes optimal detector is given by the deterministic detector (7.14), with

m
(WPT)jk = Z 4iPki = Z 4iPki — 9jPkj-
i) i=1

The first term is independent of j, so the optimal detector is simply

0= argmax(kaQJ)a
j
when X = k is observed. The solution has a simple interpretation: Since py;q;
gives the probability that # = j7 and X = k, this detector is a maximum a posteriori
probability (MAP) detector.
For the special case ¢ = (1/m)1, i.e., a uniform prior distribution on 6, this
MAP detector reduces to a maximum likelihood (ML) detector:

6= argmax pg; .
J

Thus, a maximum likelihood detector minimizes the (unweighted) average or mean
probability of error.

Binary hypothesis testing

As an illustration, we consider the special case m = 2, which is called binary
hypothesis testing. The random variable X is generated from one of two distribu-
tions, which we denote p € R"™ and ¢ € R", to simplify the notation. Often the
hypothesis 8 = 1 corresponds to some normal situation, and the hypothesis § = 2
corresponds to some abnormal event that we are trying to detect. If 6 = 1, we say
the test is negative (i.e., we guess that the event did not occur); if 6 =2, we say
the test is positive (i.e., we guess that the event did occur).
The detection probability matrix D € R?*? is traditionally expressed as

| 1=Py Py

D= P, 1— Py |°

Here Py, is the probability of a false negative (i.e., the test is negative when in fact
the event has occurred) and Py, is the probability of a false positive (i.e., the test
is positive when in fact the event has not occurred), which is also called the false
alarm probability. The optimal detector design problem is a bi-criterion problem,
with objectives Py, and Pr,.

The optimal trade-off curve between Py, and Py, is called the receiver operating
characteristic (ROC), and is determined by the distributions p and g. The ROC
can be found by scalarizing the bi-criterion problem, as described in §7.3.4. For
the weight matrix W, an optimal detector (7.14) is

6 — 1 Waipr > Wiag
2 Waipr < Wiagk
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Figure 7.4 Optimal trade-off curve between probability of a false negative,
and probability of a false positive test result, for the matrix P given in (7.15).
The vertices of the trade-off curve, labeled 1-3, correspond to deterministic
detectors; the point labeled 4, which is a randomized detector, is the mini-
max detector. The dashed line shows Pr, = P, the points where the error
probabilities are equal.

when X = k is observed. This is called a likelithood ratio threshold test: if the
ratio pg/qx is more than the threshold Wis/Way, the test is negative (i.e., 0 =
1); otherwise the test is positive. By choosing different values of the threshold,
we obtain (deterministic) Pareto optimal detectors that give different levels of
false positive versus false negative error probabilities. This result is known as
the Neyman-Pearson lemma.

The likelihood ratio detectors do not give all the Pareto optimal detectors; they
are the vertices of the optimal trade-off curve, which is piecewise-linear.

Example 7.4 We consider a binary hypothesis testing example with n = 4, and

0.70 0.10
0.20 0.10

P= 0.056 0.70 |~ (7.15)
0.05 0.10

The optimal trade-off curve between Pp, and Pp,, i.e., the receiver operating curve,
is shown in figure 7.4. The left endpoint corresponds to the detector which is always
negative, independent of the observed value of X; the right endpoint corresponds to
the detector that is always positive. The vertices labeled 1, 2, and 3 correspond to
the deterministic detectors

n 1 1 0 1

T o |: 0o 0 1 0]’
2 1 1 0 0

r - |: 0O 0 1 1|’
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@ _ [1 00 0
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respectively. The point labeled 4 corresponds to the nondeterministic detector

pw_[1 23 00
“lo 13 1 1|

which is the minimax detector. This minimax detector yields equal probability of
a false positive and false negative, which in this case is 1/6. Every deterministic
detector has either a false positive or false negative probability that exceeds 1/6,
so this is an example where a randomized detector outperforms every deterministic
detector.

Robust detectors

So far we have assumed that P, which gives the distribution of the observed variable
X, for each value of the parameter 6, is known. In this section we consider the case
where these distributions are not known, but certain prior information about them
is given. We assume that P € P, where P is the set of possible distributions. With
a randomized detector characterized by T', the detection probability matrix D now
depends on the particular value of P. We will judge the error probabilities by
their worst-case values, over P € P. We define the worst-case detection probability
matric DV as
D¢ =sup Dij, i, j=1,....,m, i#j
Pep

and
we L
Dy} —Igrelg)D”, i=1,...,m.

The off-diagonal entries give the largest possible probability of errors, and the
diagonal entries give the smallest possible probability of detection, over P € P.
Note that > 1, D7 # 1 in general, i.e., the columns of a worst-case detection
probability matrix do not necessarily add up to one.

We define the worst-case probability of error as

Piwce —1— D;}:c

Thus, P¥°° is the largest probability of error, when § = i, over all possible distri-
butions in P.

Using the worst-case detection probability matrix, or the worst-case probability
of error vector, we can develop various robust versions of detector design problems.
In the rest of this section we concentrate on the robust minimax detector design
problem, as a generic example that illustrates the ideas.

We define the robust minimazx detector as the detector that minimizes the worst-
case probability of error, over all hypotheses, i.e., minimizes the objective

wece __ _ ) = 1 — 1 1
max PY° = max sup (1—(TP)y)=1 ,pin 1;161%

i=1,....m pcp

The robust minimax detector minimizes the worst possible probability of error,
over all m hypotheses, and over all P € P.
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Robust minimax detector for finite P

When the set of possible distributions is finite, the robust minimax detector design
problem is readily formulated as an LP. With P = {Py,..., P;}, we can find the
robust minimax detector by solving

maximize mini:17___7m infpe'p(TP)ii = minizl,_“’m minj=17,__,k(TPj)ii
subject to t; =0, 17t; =1, i=1,...,n,

The objective is piecewise-linear and concave, so this problem can be expressed as
an LP. Note that we can just as well consider P to be the polyhedron conv P;
the associated worst-case detection matrix, and robust minimax detector, are the
same.

Robust minimax detector for polyhedral P

It is also possible to efficiently formulate the robust minimax detector problem as an
LP when P is a polyhedron described by linear equality and inequality constraints.
This formulation is less obvious, and relies on a dual representation of P.

To simplify the discussion, we assume that P has the form

P={P=1[p1 - pm] | Aepk =br, 1pp =1, pr = 0}. (7.16)

In other words, for each distribution pj, we are given some expected values Agpy =

b. (These might represent known moments, probabilities, etc.) The extension to

the case where we are given inequalities on expected values is straightforward.
The robust minimax design problem is

maximize 7y
subject to inf{tI'p| Aip=0b;, 1Tp=1,p=0} >, i=1,....,m
t; =0, 1Tt; =1, i=1,...,n,

where #1" denotes the ith row of T' (so that (T'P);; = t! p;). By LP duality,
inf{t!p| Aip="b;, 1Tp=1, p =0} =sup{v b, + pu | ATv+ pul <4}

Using this, the robust minimax detector design problem can be expressed as the
LP

maximize 7y

subject to vlb;+pu; >, i=1,....m
A?Vl+ulljil, izl,...,m
titO, 1Tti:1, i:1,...7n,

with variables v1, ..., Vm, i1, -, fin, and T (which has columns ¢; and rows £} ).

Example 7.5 Robust binary hypothesis testing. Suppose m = 2 and the set P in (7.16)
is defined by

| a a2z o oan | o | B
A17A27A7 a% a% a%:|7 b1|: :|7 b2[ﬁ2:|

Designing a robust minimax detector for this set P can be interpreted as a binary
hypothesis testing problem: based on an observation of a random variable X €
{ai1,...,an}, choose between the following two hypotheses:
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7.4

7.4.1

1. EX=01,EX? =
2. EX =01, EX?=3,.

Let 7 denote the first row of T (and so, (1 —%)7 is the second row). For given £, the
worst-case probabilities of correct detection are

iaipi:aly zn:afpi:az, 1"p =1, pto}

i=1 i=1

n n
Z%MZﬂh Za?pi:ﬂﬁ, 1"p=1, Pt0}~

i=1 1=1

o= inf{iTp

DYy = inf{(l—f)Tp

Using LP duality we can express DY as the optimal value of the LP

maximize 2o + z11 + zoqo
subject to 2o + a;2z1 + afzg <ty 1=1,...,n,

with variables zo, z1, 22 € R. Similarly D35 is the optimal value of the LP

maximize wo + w1B1 + w2B2
subject to  wo + a;wi + atwe <1—#;, i=1,...,n,

with variables wo, w1, w2 € R. To obtain the minimax detector, we have to maximize
the minimum of D} and D35, i.e., solve the LP

maximize 7y
subject to 2o + z1a2 + 22002 > ¥
wo + frwr + Bawa 27

Zo-i—Zlai—l—Zza? < t;, i~= 1,...,n
w0+w1ai+w2af§17ti, t=1,...,n
0=<t=1.

The variables are zo, z1, 22, wo, w1, w2 and t.

Chebyshev and Chernoff bounds

In this section we consider two types of classical bounds on the probability of a set,
and show that generalizations of each can be cast as convex optimization problems.
The original classical bounds correspond to simple convex optimization problems
with analytical solutions; the convex optimization formulation of the general cases
allow us to compute better bounds, or bounds for more complex situations.

Chebyshev bounds

Chebyshev bounds give an upper bound on the probability of a set based on known
expected values of certain functions (e.g., mean and variance). The simplest ex-
ample is Markov’s inequality: If X is a random variable on R, with EX = p,
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then we have prob(X > 1) < u, no matter what the distribution of X is. An-
other simple example is Chebyshev’s bound: If X is a random variable on R with
EX = p and E(X — u)? = 02, then we have prob(|X — pu| > 1) < o2, again no
matter what the distribution of X is. The idea behind these simple bounds can be
generalized to a setting in which convex optimization is used to compute a bound
on the probability.

Let X be a random variable on S C R™, and C' C S be the set for which we
want to bound prob(X € C). Let 1¢ denote the 0-1 indicator function of the set
C,ie,le(z)=1ifzeCand 1lc(2) =0if 2 ¢ C.

Our prior knowledge of the distribution consists of known expected values of
some functions:

EfZ(X):(l“ i:l,...,n,

where f; : R™ — R. We take fy to be the constant function with value one, for
which we always have E fo(X) = ap = 1. Consider a linear combination of the
functions f;, given by

f(z) = Zmifi(z)7
i=0

where z; € R, i = 0,...,n. From our knowledge of E f;(X), we have E f(X) =
alx.

Now suppose that f satisfies the condition f(z) > 1¢(2) for all z € S, i.e., f
is pointwise greater than or equal to the indicator function of C' (on S). Then we
have

Ef(X)=a"2>E1c(X) = prob(X € C).
In other words, a” z is an upper bound on prob(X € C), valid for all distributions
supported on S, with E f;(X) = a;.
We can search for the best such upper bound on prob(X € C), by solving the

problem

minimize xg+ a1x1 + -+ apTn

subject to  f(z) = Y1 ozifi(z) > 1for z € C (7.17)

f(z) =3 ipaifi(z) > 0for z €S, 2 ¢ C,

with variable z € R""!. This problem is always convex, since the constraints can
be expressed as

g(@) =1-1nf f(z) <0, go(a) =~ inf f(z)<0
(91 and go are convex). The problem (7.17) can also be thought of as a semi-infinite
linear program, i.e., an optimization problem with a linear objective and an infinite
number of linear inequalities, one for each z € S.

In simple cases we can solve the problem (7.17) analytically. As an example, we
take S =Ry, C =[1,00), fo(z) =1, and fi(z2) =2z, with E fi( X) =EX =p <1
as our prior information. The constraint f(z) > 0 for z € S reduces to zy > 0,
21 > 0. The constraint f(z) > 1 for z € C, i.e., xg+x12 > 1 for all z > 1, reduces
to o +x1 > 1. The problem (7.17) is then

minimize  xg + px;
subject to x9 >0, x1 >0
To+ 1 > 1.
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Since 0 < p < 1, the optimal point for this simple LP is g = 0, 1 = 1. This gives
the classical Markov bound prob(X > 1) < u.
In other cases we can solve the problem (7.17) using convex optimization.

Remark 7.1 Duality and the Chebyshev bound problem. The Chebyshev bound prob-
lem (7.17) determines a bound on prob(X € C) for all probability measures that
satisfy the given expected value constraints. Thus we can think of the Chebyshev
bound problem (7.17) as producing a bound on the optimal value of the infinite-
dimensional problem

maximize fc m(dz)

subject to f fi(z)m(dz) =a;;, i=1,...,n
m(dz) =1

™ >0,

(7.18)

where the variable is the measure m, and 7 > 0 means that the measure is nonnegative.

Since the Chebyshev problem (7.17) produces a bound on the problem (7.18), it
should not be a surprise that they are related by duality. While semi-infinite and
infinite-dimensional problems are beyond the scope of this book, we can still formally
construct a dual of the problem (7.17), introducing a Lagrange multiplier function
p: S — R, with p(z) the Lagrange multiplier associated with the inequality f(z) > 1
(for z € C) or f(z) >0 (for z € S\C). Using an integral over z where we would have
a sum in the finite-dimensional case, we arrive at the formal dual

maximize fc p(z) dz
subject to f fiz)p(z)dz=a;, i=1,...,n
jjp(z) dz=1

p(z) >0 for all z € S,

where the optimization variable is the function p. This is, essentially, the same
as (7.18).

Probability bounds with known first and second moments

As an example, suppose that S = R™, and that we are given the first and second
moments of the random variable X:

EX =acR™, ExXxT=xes™

In other words, we are given the expected value of the m functions z;, i =1,...,m,
and the m(m+1)/2 functions z;2;, 4,7 = 1,...,m, but no other information about
the distribution.

In this case we can express f as the general quadratic function

f(z) =2T"Pz+2¢" 2+,

where the variables (i.e., the vector « in the discussion above) are P € 8™, ¢ € R™,
and r € R. From our knowledge of the first and second moments, we find that
Ef(X) = EXTPX+2¢"X +7r)
= Etr(PXXT)+2E¢" X +r
= tr(XP)+2¢"a +r.
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The constraint that f(z) > 0 for all z can be expressed as the linear matrix in-

equality
P q
>~ 0.
[ ¢ T ] =0
In particular, we have P = 0.

Now suppose that the set C' is the complement of an open polyhedron,
C=R"\P, P={z|alz<b,i=1,...,k}
The condition that f(z) > 1 for all z € C is the same as requiring that
azrz >b = zTPz+2qu+r2 1

for i =1,...,k. This, in turn, can be expressed as: there exist 7y,...,7; > 0 such
that
P q 0 a;/2 )
— 7 =1,...,k.
{qT r—l}_T’[a?/Q —bi}’ i=1....k
(See §B.2.)

Putting it all together, the Chebyshev bound problem (7.17) can be expressed
as

minimize  tr(XP) + 2¢Ta +r

. P q 0 a;/2 .
=T =1,...
subject to { - } T [ al/2 —b; } ;o i=1,....k

1
>0, i=1,.. .k (7.19)
P q
—
{ ¢ T } =
which is a semidefinite program in the variables P, ¢, r, and 71,...,7x. The

optimal value, say «, is an upper bound on prob(X € C) over all distributions
with mean a and second moment Y. Or, turning it around, 1 — « is a lower bound
on prob(X € P).

Remark 7.2 Duality and the Chebyshev bound problem. The dual SDP associated
with (7.19) can be expressed as

.. k
maximize Zi:l i

subject to  alz > b\, i=1,...,

k
k Zi  zi Y a
A

Zi
z

N

i

o =0 =1k

N

The variables are Z; € S™, z; € R™, and \; € R, for i = 1,...,k. Since the
SDP (7.19) is strictly feasible, strong duality holds and the dual optimum is attained.

We can give an interesting probability interpretation to the dual problem. Suppose
Zi, ziy, N; are dual feasible and that the first » components of A are positive, and the
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rest are zero. For simplicity we also assume that Zle Ai < 1. We define

i = (1/>\i)z,-, i:l,‘..,r,
w L a i)\m
o = - - iZi |,
H -
1 - T
w = —-|X- Aixiz; |,

where p =1— Zle Ai. With these definitions the dual feasibility constraints can be
expressed as

T .
a;x; >by, i=1,...,r

i A xlxlT €T; " W wo | Y a
Clo2f 1 Flwl 1 |7 a1 |
i=1

Moreover, from dual feasibility,

and

W wo . [ o] . JJZJJZT €x;
M|:wg 1] | d" 1 _Z/\l[:p? 1}

L 4=
[ = ] - A/ ) zizl 2

o at 1| Z [ 2; i
- - i=1
[ > a i - Zi Zi

— _

- al 1 Z [ zZT i ]
L 4=

= 0.

. S
Therefore, W > wowér, so it can be factored as W — wowér = Zi:l wiw;f. Now

consider a discrete random variable X with the following distribution. If s > 1, we

take
X=uz with probability A\;, ¢ =1,...,r
X =wo ++/sw; with probability u/(2s), i=1,...,s
X =wo —+/sw; with probability u/(2s), i=1,...,s

If s =0, we take

X =x; with probability A\;, i=1,...,r
X =wo with probability u.

It is easily verified that E X = a and EXXT =X, i.e., the distribution matches the
given moments. Furthermore, since z; € C,

prob(X € C) > Z)\i.
i=1
In particular, by applying this interpretation to the dual optimal solution, we can

construct a distribution that satisfies the Chebyshev bound from (7.19) with equality,
which shows that the Chebyshev bound is sharp for this case.
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Chernoff bounds

Let X be a random variable on R. The Chernoff bound states that

> < 3 )\(Xfu)
prob(X >u) < ig%Ee ,

which can be expressed as

log prob(X > u) < )i\r;%{—/\u + log Ee*}. (7.20)

Recall (from example 3.41, page 106) that the righthand term, log E e*¥, is called
the cumulant generating function of the distribution, and is always convex, so the
function to be minimized is convex. The bound (7.20) is most useful in cases when
the cumulant generating function has an analytical expression, and the minimiza-
tion over A can be carried out analytically.

For example, if X is Gaussian with zero mean and unit variance, the cumulant
generating function is

logEe*™ = \?/2,

and the infimum over A > 0 of —Au + A?/2 occurs with A = u (if u > 0), so the
Chernoff bound is (for u > 0)

prob(X > u) < e /2,

The idea behind the Chernoff bound can be extended to a more general setting,
in which convex optimization is used to compute a bound on the probability of a
set in R™. Let C' € R™, and as in the description of Chebyshev bounds above,
let 1o denote the 0-1 indicator function of C. We will derive an upper bound on
prob(X € C). (In principle we can compute prob(X € C), for example by Monte
Carlo simulation, or numerical integration, but either of these can be a daunting
computational task, and neither method produces guaranteed bounds.)

Let A € R™ and i € R, and consider the function f: R™ — R given by

HOET

As in the development of Chebyshev bounds, if f satisfies f(z) > 1¢(z) for all z,
then we can conclude that

prob(X € C) =E1¢(X) < E f(X).
Clearly we have f(z) > 0 for all z; to have f(z) > 1 for z € C is the same as
MNz4pu>0foral zeC,ie, —A'z<pforall ze C. Thus, if —ATz < u for all
z € C, we have the bound
prob(X € C) < Eexp(\T X + p),

or, taking logarithms,

logprob(X € C) < i+ log Eexp(A\T X).
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From this we obtain a general form of Chernoff’s bound:
logprob(X € C) < inf{u+logEexp(A\'X) | — ATz < pforall z € C}
= inf (sup(—/\Tz) + 1ogEexp(/\TX)>
A zel

= inf (Sc(—A) + logEexp(AT X)),

where S¢ is the support function of C. Note that the second term, log E exp(AT X),
is the cumulant generating function of the distribution, and is always convex (see
example 3.41, page 106). Evaluating this bound is, in general, a convex optimiza-
tion problem.

Chernoff bound for a Gaussian variable on a polyhedron

As a specific example, suppose that X is a Gaussian random vector on R™ with
zero mean and covariance I, so its cumulant generating function is

logEexp(A\TX) = AT\ /2.
We take C' to be a polyhedron described by inequalities:
C = {z| Az < b},

which we assume is nonempty.
For use in the Chernoff bound, we use a dual characterization of the support
function S¢:

Sc(y) = sup{y’z| Az <b}
= —inf{—yT2 | Az < b}
= —sup{-bTu| ATu=y, u>0}
= inf{bTu| ATu=y, u> 0}

where in the third line we use LP duality:
inf{c'z | Az < b} =sup{—b"u | ATu+c=0, u>0}
with ¢ = —y. Using this expression for S¢ in the Chernoff bound we obtain
logprob(X € C) < iI)\lf (Sc(=A) + log Eexp(AT X))
= i&lfi%f{bTu +ATA/2 [u=0, ATu+ X =0}

Thus, the Chernoff bound on prob(X € C) is the exponential of the optimal value
of the QP
minimize  bTu + A\T)\/2

subject to u>=0, ATu+\=0, (7.21)

where the variables are u and A.
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This problem has an interesting geometric interpretation. It is equivalent to

minimize  bTu + (1/2)[| AT ul3
subject to u >~ 0,

which is the dual of
maximize —(1/2)|z||3
subject to Ax < b.

In other words, the Chernoff bound is
prob(X € C) < exp(—dist(0,0)?/2), (7.22)
where dist(0, C') is the Euclidean distance of the origin to C.

Remark 7.3 The bound (7.22) can also be derived without using Chernoff’s inequality.
If the distance between 0 and C is d, then there is a halfspace H = {z | a”z > d},
with ||a||2 = 1, that contains C'. The random variable a” X is A/(0, 1), so

prob(X € C) < prob(X € H) = &(—d),

where @ is the cumulative distribution function of a zero mean, unit variance Gaus-

sian. Since ®(—d) < e/ for d > 0, this bound is at least as sharp as the Chernoff
bound (7.22).

7.4.3 Example

In this section we illustrate the Chebyshev and Chernoff probability bounding
methods with a detection example. We have a set of m possible symbols or signals
s € {s1,82,.--,8m} C R", which is called the signal constellation. One of these
signals is transmitted over a noisy channel. The received signal is x s+ v,
where v is a noise, modeled as a random variable. We assume that Ev = 0 and
Evv” = 0?1, i.e., the noise components v1,...,v, are zero mean, uncorrelated,

2. The receiver must estimate which signal was sent on the

and have variance o~.
basis of the received signal x = s +v. The minimum distance detector chooses as
estimate the symbol s, closest (in Euclidean norm) to . (If the noise v is Gaussian,
then minimum distance decoding is the same as maximum likelihood decoding.)
If the signal s; is transmitted, correct detection occurs if s; is the estimate,
given z. This occurs when the signal sj is closer to x than the other signals, i.e.,

[ = sillz < llx=sjlla, 57k

Thus, correct detection of symbol s occurs if the random variable v satisfies the
linear inequalities

2(sj — s1)" (sn +v) < |53 — Isall3, 5 # k.

These inequalities define the Voronoi region Vi of s in the signal constellation,
i.e., the set of points closer to s; than any other signal in the constellation. The
probability of correct detection of s is prob(sg + v € Vy).

Figure 7.5 shows a simple example with m = 7 signals, with dimension n = 2.
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Figure 7.5 A constellation of 7 signals s1,...,87 € Rz, shown as small circles.
The line segments show the boundaries of the corresponding Voronoi regions.
The minimum distance detector selects symbol s; when the received signal
lies closer to si than to any of the other points, i.e., if the received signal is
in the interior of the Voronoi region around symbol si. The circles around
each point have radius one, to show the scale.

Chebyshev bounds

The SDP bound (7.19) provides a lower bound on the probability of correct detec-
tion, and is plotted in figure 7.6, as a function of the noise standard deviation o,
for the three symbols s1, s2, and s3. These bounds hold for any noise distribution
with zero mean and covariance o2I. They are tight in the sense that there exists
a noise distribution with zero mean and covariance ¥ = ¢2I, for which the proba-
bility of error is equal to the lower bound. This is illustrated in figure 7.7, for the
first Voronoi set, and o = 1.

Chernoff bounds

We use the same example to illustrate the Chernoff bound. Here we assume that the
noise is Gaussian, i.e., v ~ N'(0,021). If symbol s, is transmitted, the probability
of correct detection is the probability that s; + v € Vi. To find a lower bound for
this probability, we use the QP (7.21) to compute upper bounds on the probability
that the ML detector selects symbol 4, ¢ = 1,...,m, i # k. (Each of these upper
bounds is related to the distance of s to the Voronoi set V;.) Adding these upper
bounds on the probabilities of mistaking s; for s;, we obtain an upper bound on
the probability of error, and therefore, a lower bound on the probability of correct
detection of symbol s;. The resulting lower bound, for s1, is shown in figure 7.8,
along with an estimate of the probability of correct detection obtained using Monte
Carlo analysis.
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probability of correct detection

00 0.5 1 1.5 2 2.5

Figure 7.6 Chebyshev lower bounds on the probability of correct detection
for symbols s1, s2, and s3. These bounds are valid for any noise distribution
that has zero mean and covariance 1.

Figure 7.7 The Chebyshev lower bound on the probability of correct detec-
tion of symbol 1 is equal to 0.2048 when o = 1. This bound is achieved by
the discrete distribution illustrated in the figure. The solid circles are the
possible values of the received signal s; + v. The point in the center of the
ellipse has probability 0.2048. The five points on the boundary have a total
probability 0.7952. The ellipse is defined by z” Pz + 2¢7« + r = 1, where
P, q, and r are the optimal solution of the SDP (7.19).
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Figure 7.8 The Chernoff lower bound (solid line) and a Monte Carlo esti-
mate (dashed line) of the probability of correct detection of symbol s1, as
a function of o. In this example the noise is Gaussian with zero mean and
covariance 1.

Experiment design

We consider the problem of estimating a vector x € R™ from measurements or
experiments
T .
yi=a;x+w;, 1=1,...,m,

where w; is measurement noise. We assume that w; are independent Gaussian
random variables with zero mean and unit variance, and that the measurement
vectors aq,...,a, span R". The maximum likelihood estimate of x, which is the
same as the minimum variance estimate, is given by the least-squares solution

m -1 m

- § T §

Tr = a;a; YiQj.
i=1 =1

The associated estimation error ¢ = & — x has zero mean and covariance matrix

m -1
E=Eee" = (Z am?) .
i=1
The matrix E characterizes the accuracy of the estimation, or the informativeness
of the experiments. For example the a-confidence level ellipsoid for x is given by
E={z](z—2)"E" (= — ) < B},

where 3 is a constant that depends on n and a.
We suppose that the vectors aq, ..., a,, which characterize the measurements,
can be chosen among p possible test vectors v1,...,v, € R", i.e., each a; is one of
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the v;. The goal of experiment design is to choose the vectors a;, from among the
possible choices, so that the error covariance E is small (in some sense). In other
words, each of m experiments or measurements can be chosen from a fixed menu
of p possible experiments; our job is to find a set of measurements that (together)
are maximally informative.

Let m; denote the number of experiments for which a; is chosen to have the
value v;, so we have

my+ -+ my =m.

We can express the error covariance matrix as

_1 -1

m p
— § ol = E vt
E= a;a; = m;v;v;
i=1 j=1

This shows that the error covariance depends only on the numbers of each type of
experiment chosen (i.e., mq,...,my).

The basic experiment design problem is as follows. Given the menu of possible
choices for experiments, i.e., v1,...,vp, and the total number m of experiments to
be carried out, choose the numbers of each type of experiment, i.e., my,...,my,
to make the error covariance E small (in some sense). The variables mq,...,m,
must, of course, be integers and sum to m, the given total number of experiments.
This leads to the optimization problem

-1
minimize (w.r.t. S) F= (E§:1 mjvjva)

subject to m; >0, mi+--+m,=m (7.23)
m; € 7,
where the variables are the integers mq, ..., my.

The basic experiment design problem (7.23) is a vector optimization problem
over the positive semidefinite cone. If one experiment design results in F, and
another in E, with E < E, then certainly the first experiment design is as good
as or better than the second. For example, the confidence ellipsoid for the first
experiment design (translated to the origin for comparison) is contained in the
confidence ellipsoid of the second. We can also say that the first experiment design
allows us to estimate g7 x better (i.e., with lower variance) than the second experi-
ment design, for any vector ¢, since the variance of our estimate of ¢”'z is given by
q" Eq for the first experiment design and qT Eq for the second. We will see below
several common scalarizations for the problem.

The relaxed experiment design problem

The basic experiment design problem (7.23) can be a hard combinatorial problem
when m, the total number of experiments, is comparable to n, since in this case
the m; are all small integers. In the case when m is large compared to n, however,
a good approximate solution of (7.23) can be found by ignoring, or relaxing, the
constraint that the m; are integers. Let A\; = m;/m, which is the fraction of
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the total number of experiments for which a; = v;, or the relative frequency of
experiment . We can express the error covariance in terms of \; as

-1
1 p

E=— Nvjol ) 7.24
m(z ) (720

The vector A € R? satisfies A = 0, 17X = 1, and also, each )\; is an integer multiple
of 1/m. By ignoring this last constraint, we arrive at the problem

0(1/M) (X2, Aw]) ™ (7.25)

minimize (w.r.t. 87) E
A 17x=1,

subject to >
with variable A € RP. To distinguish this from the original combinatorial experi-
ment design problem (7.23), we refer to it as the relazed experiment design problem.
The relaxed experiment design problem (7.25) is a convex optimization problem,
since the objective E is an S -convex function of .

Several statements can be made about the relation between the (combinato-
rial) experiment design problem (7.23) and the relaxed problem (7.25). Clearly
the optimal value of the relaxed problem provides a lower bound on the optimal
value of the combinatorial one, since the combinatorial problem has an additional
constraint. From a solution of the relaxed problem (7.25) we can construct a sub-
optimal solution of the combinatorial problem (7.23) as follows. First, we apply
simple rounding to get

m; = round(mX\;), i=1,...,p.
Corresponding to this choice of my,...,m, is the vector 5\,
Ai = (1/m)round(m);), i=1,...,p.

The vector \ satisfies the constraint that each entry is an integer multiple of 1/m.
Clearly we have |\; — A\;| < 1/(2m), so for m large, we have A &~ X. This implies
that the constraint 17X = 1 is nearly satisfied, for large m, and also that the error
covariance matrices associated with A and A are close.

We can also give an alternative interpretation of the relaxed experiment design
problem (7.25). We can interpret the vector A € RP as defining a probability
distribution on the experiments vy, ..., v,. Our choice of A corresponds to a random
experiment: each experiment a; takes the form v; with probability A;.

In the rest of this section, we consider only the relaxed experiment design
problem, so we drop the qualifier ‘relaxed’ in our discussion.

Scalarizations

Several scalarizations have been proposed for the experiment design problem (7.25),
which is a vector optimization problem over the positive semidefinite cone.



7.5 Experiment design

387

D-optimal design

The most widely used scalarization is called D-optimal design, in which we minimize
the determinant of the error covariance matrix F. This corresponds to designing
the experiment to minimize the volume of the resulting confidence ellipsoid (for
a fixed confidence level). Ignoring the constant factor 1/m in E, and taking the
logarithm of the objective, we can pose this problem as

—1

minimize  logdet (37, Nvivl)
=1 AU, 7.26
subject to A >0, 17A=1, ( )

which is a convex optimization problem.

FE-optimal design
In E-optimal design, we minimize the norm of the error covariance matrix, i.e.,
the maximum eigenvalue of E. Since the diameter (twice the longest semi-axis)

of the confidence ellipsoid £ is proportional to ||E||§/2, minimizing ||E||2 can be
interpreted geometrically as minimizing the diameter of the confidence ellipsoid.
E-optimal design can also be interpreted as minimizing the maximum variance of
qTe, over all ¢ with g2 = 1.

The E-optimal experiment design problem is

minimize H( P ivol) -t H
subject to A >0, 17A=1.

The objective is a convex function of A, so this is a convex problem.
The FE-optimal experiment design problem can be cast as an SDP

maximize ¢
subject to  Y.0_, Aol = tI (7.27)
A=0, 1TA=1,

with variables A € R? and t € R.

A-optimal design

In A-optimal experiment design, we minimize tr F, the trace of the covariance

matrix. This objective is simply the mean of the norm of the error squared:
E|e|2 =Etr(ee’) =trE.

The A-optimal experiment design problem is

minimize  tr (30, Aiviv])

7.28
subject to A >=0, 1TA=1. ( )

This, too, is a convex problem. Like the E-optimal experiment design problem, it
can be cast as an SDP:
minimize 17w
S vl ey,
T

subject to
€L Uk
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where the variables are u € R"™ and A € R?, and here, ¢, is the kth unit vector.

Optimal experiment design and duality

The Lagrange duals of the three scalarizations have an interesting geometric mean-
ing.
The dual of the D-optimal experiment design problem (7.26) can be expressed
as
maximize logdet W + nlogn
subject to vIWwv; <1, i=1,...,p,

with variable W € S™ and domain S (see exercise 5.10). This dual problem
has a simple interpretation: The optimal solution W* determines the minimum
volume ellipsoid, centered at the origin, given by {z | 27 W*x < 1}, that contains
the points v1,...,vp,. (See also the discussion of problem (5.14) on page 222.) By
complementary slackness,

MN(1—of W) =0, i=1,...,p, (7.29)

i.e., the optimal experiment design only uses the experiments v; which lie on the
surface of the minimum volume ellipsoid.

The duals of the E-optimal and A-optimal design problems can be given a
similar interpretation. The duals of problems (7.27) and (7.28) can be expressed

as
maximize trW

subject to vl Wuv; <1, i=1,...,p (7.30)
W =0,

and
maximize  (tr W'/2)?

subject to viTin <1, i=1,...,p, (7.31)

respectively. The variable in both problems is W € S™. In the second problem
there is an implicit constraint W € S. (See exercises 5.40 and 5.10.)

As for the D-optimal design, the optimal solution W* determines a minimal
ellipsoid {x | zTW*z < 1} that contains the points v, ...,v,. Moreover W* and
A* satisfy the complementary slackness conditions (7.29), i.e., the optimal design
only uses experiments v; that lie on the surface of the ellipsoid defined by W™.

Experiment design example

We consider a problem with z € R?, and p = 20. The 20 candidate measurement
vectors a; are shown as circles in figure 7.9. The origin is indicated with a cross.
The D-optimal experiment has only two nonzero J);, indicated as solid circles in
figure 7.9. The F-optimal experiment has two nonzero );, indicated as solid circles
in figure 7.10. The A-optimal experiment has three nonzero \;, indicated as solid
circles in figure 7.11. We also show the three ellipsoids {x | xTW*z < 1} associated
with the dual optimal solutions W*. The resulting 90% confidence ellipsoids are
shown in figure 7.12, along with the confidence ellipsoid for the ‘uniform’ design,
with equal weight A; = 1/p on all experiments.
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Figure 7.9 Experiment design example. The 20 candidate measurement vec-
tors are indicated with circles. The D-optimal design uses the two measure-
ment vectors indicated with solid circles, and puts an equal weight A\; = 0.5
on each of them. The ellipsoid is the minimum volume ellipsoid centered at
the origin, that contains the points v;.
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Figure 7.10 The FE-optimal design uses two measurement vectors. The
dashed lines are (part of) the boundary of the ellipsoid {z | z" W*z < 1}
where W* is the solution of the dual problem (7.30).

A =0.30
- o~ __
4 O T~
o -
\ o T~
N o ~.
N o ~.
N [¢) ~a
~~_ © >~
~_ 0O ~.
Ce + g S
A =038 S .~
-~ ~ S S
\\IO\OO \\
A3 =032 - B

Figure 7.11 The A-optimal design uses three measurement vectors. The
dashed line shows the ellipsoid {z | z7W*z < 1} associated with the solution
of the dual problem (7.31).
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Figure 7.12 Shape of the 90% confidence ellipsoids for D-optimal, A-optimal,
E-optimal, and uniform designs.

Extensions

Resource limits

Suppose that associated with each experiment is a cost ¢;, which could represent
the economic cost, or time required, to carry out an experiment with v;. The total
cost, or time required (if the experiments are carried out sequentially) is then

micy + -+ mpep = meT .

We can add a limit on total cost by adding the linear inequality mc” A < B, where
B is a budget, to the basic experiment design problem. We can add multiple linear
inequalities, representing limits on multiple resources.

Multiple measurements per experiment

We can also consider a generalization in which each experiment yields multiple
measurements. In other words, when we carry out an experiment using one of the
possible choices, we obtain several measurements. To model this situation we can
use the same notation as before, with v; as matrices in Rk

Vi = [ Uil = Uik, ]7

where k; is the number of (scalar) measurements obtained when the experiment v;
is carried out. The error covariance matrix, in this more complicated setup, has
the exact same form.

In conjunction with additional linear inequalities representing limits on cost or
time, we can model discounts or time savings associated with performing groups
of measurements simultaneously. Suppose, for example, that the cost of simulta-
neously making (scalar) measurements v; and vy is less than the sum of the costs
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of making them separately. We can take vs to be the matrix
vz = [ V1 U2 ]

and assign costs c1, ¢o, and c3 associated with making the first measurement alone,
the second measurement alone, and the two simultaneously, respectively.

When we solve the experiment design problem, A; will give us the fraction of
times we should carry out the first experiment alone, Ay will give us the fraction
of times we should carry out the second experiment alone, and A3 will give us
the fraction of times we should carry out the two experiments simultaneously.
(Normally we would expect a choice to be made here; we would not expect to have
A1 >0, Ay >0, and A3 > O)
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Exercises

Estimation

Linear measurements with exponentially distributed noise. Show how to solve the ML
estimation problem (7.2) when the noise is exponentially distributed, with density

[ /a)e e z>0
pz) = { 0 2 <0,
where a > 0.

ML estimation and Lo -norm approximation. We consider the linear measurement model
y = Az + v of page 352, with a uniform noise distribution of the form

p(z)_{ 1/(2a) |2 <a

0 |z| > a.

As mentioned in example 7.1, page 352, any z that satisfies ||Az — y|loo < « is a ML
estimate.

Now assume that the parameter « is not known, and we wish to estimate «a, along with
the parameters x. Show that the ML estimates of x and « are found by solving the
{~o-norm approximation problem

minimize || Az — y||,

where af are the rows of A.

Probit model. Suppose y € {0,1} is random variable given by

1 adTutb+v <0
Y=Y o atu4+b+v>0,

where the vector u € R™ is a vector of explanatory variables (as in the logistic model
described on page 354), and v is a zero mean unit variance Gaussian variable.

Formulate the ML estimation problem of estimating a and b, given data consisting of
pairs (u;,yi), ¢ = 1,..., N, as a convex optimization problem.

Estimation of covariance and mean of a multivariate normal distribution. We consider the
problem of estimating the covariance matrix R and the mean a of a Gaussian probability
density function

Pr.a(y) = (27)"/* det(R) " * exp(—(y — a) "R~ (y — a)/2),
based on N independent samples y1, y2, ..., yn € R".

(a) We first consider the estimation problem when there are no additional constraints
on R and a. Let p and Y be the sample mean and covariance, defined as

N N
1 1 T
“_Nkz% Y—NZ(yk—u)(yk—u%
=1

k=1

Show that the log-likelihood function

I(R,a) = —(Nn/2)log(2m) — (N/2)logdet R — (1/2) Z(yk —a)"R ' (yx — a)

k=1
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can be expressed as
I(R,a) = g (fn log(27) — logdet R — tr(R™'Y) — (a — )" R " (a — ,u)) .

Use this expression to show that if Y > 0, the ML estimates of R and a are unique,
and given by
aml = K, le =Y.

(b) The log-likelihood function includes a convex term (—logdet R), so it is not obvi-
ously concave. Show that [ is concave, jointly in R and a, in the region defined
by

R =<2Y.

This means we can use convex optimization to compute simultaneous ML estimates
of R and a, subject to convex constraints, as long as the constraints include R < 2Y’,
i.e., the estimate R must not exceed twice the unconstrained ML estimate.

Markov chain estimation. Consider a Markov chain with n states, and transition proba-
bility matrix P € R™*" defined as

Pij = prob(y(t +1) =i | y(t) = j).
The transition probabilities must satisfy P;; > 0 and » " P =1, j =1,...,n. We
consider the problem of estimating the transition probabilities, given an observed sample
sequence y(1) = k1, y(2) = ka, ..., y(N) = k.

(a) Show that if there are no other prior constraints on P;;, then the ML estimates are
the empirical transition frequencies: P;; is the ratio of the number of times the state
transitioned from j into ¢, divided by the number of times it was j, in the observed
sample.

(b) Suppose that an equilibrium distribution p of the Markov chain is known, i.e., a
vector ¢ € R} satisfying 17¢ =1 and Pq = ¢q. Show that the problem of computing
the ML estimate of P, given the observed sequence and knowledge of ¢, can be
expressed as a convex optimization problem.

Estimation of mean and variance. Consider a random variable x € R with density p,
which is normalized, i.e., has zero mean and unit variance. Consider a random variable
y = (x+b)/a obtained by an affine transformation of z, where @ > 0. The random variable
y has mean b and variance 1/a®. As a and b vary over R and R, respectively, we generate
a family of densities obtained from p by scaling and shifting, uniquely parametrized by
mean and variance.

Show that if p is log-concave, then finding the ML estimate of a and b, given samples
Yi,--.,Yn of y, is a convex problem.

As an example, work out an analytical solution for the ML estimates of a and b, assuming

p is a normalized Laplacian density, p(z) = e~ 27,
ML estimation of Poisson distributions. Suppose x;, ¢ = 1,...,n, are independent random
variables with Poisson distributions

e Ml

prob(z; = k) = X
with unknown means p;. The variables x; represent the number of times that one of n
possible independent events occurs during a certain period. In emission tomography, for
example, they might represent the number of photons emitted by n sources.

We consider an experiment designed to determine the means p;. The experiment involves
m detectors. If event ¢ occurs, it is detected by detector j with probability p;;. We assume
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the probabilities p;; are given (with p;; > 0, Z;nzl pji < 1). The total number of events
recorded by detector j is denoted y;,

yJ:ZyJ,“ ]:1,,m
=1

Formulate the ML estimation problem of estimating the means u;, based on observed
values of y;, j =1,...,m, as a convex optimization problem.

Hint. The variables y;; have Poisson distributions with means pj;u, i.e.,

e Pit (i )"

prob(y;; = k) = X

The sum of n independent Poisson variables with means A1, ..., A, has a Poisson distri-
bution with mean A1 +--- + \n.

Estimation using sign measurements. We consider the measurement setup
f— 3 T Y —
yi = sign(a; x + b +vs), t=1,...,m,

where z € R" is the vector to be estimated, and y; € {—1,1} are the measurements. The
vectors a; € R™ and scalars b; € R are known, and v; are IID noises with a log-concave
probability density. (You can assume that a]  + b; + v; = 0 does not occur.) Show that
maximum likelihood estimation of = is a convex optimization problem.

Estimation with unknown sensor nonlinearity. We consider the measurement setup
Yi :f(a?$+bi+vi), i=1,...,m,

where z € R" is the vector to be estimated, y; € R are the measurements, a; € R",
b; € R are known, and v; are IID noises with log-concave probability density. The function
f : R — R, which represents a measurement nonlinearity, is not known. However, it is
known that f’(t) € [I,u] for all ¢, where 0 < I < u are given.

Explain how to use convex optimization to find a maximum likelihood estimate of z, as
well as the function f. (This is an infinite-dimensional ML estimation problem, but you
can be informal in your approach and explanation.)

Nonparametric distributions on R¥. We consider a random variable z € R* with values
in a finite set {1, ..., an}, and with distribution

pi = prob(z =a;), t=1,...,n.
Show that a lower bound on the covariance of X,
S<E(X -EX)(X -EX)",

is a convex constraint in p.

Optimal detector design

Randomized detectors. Show that every randomized detector can be expressed as a convex
combination of a set of deterministic detectors: If

T=[ti to -+ t, | ER™"

satisfies ¢, = 0 and 17¢, = 1, then T can be expressed as

T=0T1+---+0nTN,
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where T; is a zero-one matrix with exactly one element equal to one per column, and
0; >0, Zf\;l 0; = 1. What is the maximum number of deterministic detectors N we may
need?

We can interpret this convex decomposition as follows. The randomized detector can be
realized as a bank of N deterministic detectors. When we observe X = k, the estimator
chooses a random index from the set {1,..., N}, with probability prob(j =) = 6;, and
then uses deterministic detector 7}.

Optimal action. In detector design, we are given a matrix P € R™*™ (whose columns
are probability distributions), and then design a matrix T € R™*"™ (whose columns are
probability distributions), so that D = TP has large diagonal elements (and small off-
diagonal elements). In this problem we study the dual problem: Given P, find a matrix
S € R™* " (whose columns are probability distributions), so that D = PS € R™*" has
large diagonal elements (and small off-diagonal elements). To make the problem specific,
we take the objective to be maximizing the minimum element of D on the diagonal.

We can interpret this problem as follows. There are n outcomes, which depend (stochas-
tically) on which of m inputs or actions we take: P;; is the probability that outcome %
occurs, given action j. Our goal is find a (randomized) strategy that, to the extent pos-
sible, causes any specified outcome to occur. The strategy is given by the matrix S: Sj;
is the probability that we take action j, when we want outcome ¢ to occur. The matrix
D gives the action error probability matrix: Dij is the probability that outcome ¢ occurs,
when we want outcome j to occur. In particular, D;; is the probability that outcome ¢
occurs, when we want it to occur.

Show that this problem has a simple analytical solution. Show that (unlike the corre-
sponding detector problem) there is always an optimal solution that is deterministic.

Hint. Show that the problem is separable in the columns of S.

Chebyshev and Chernoff bounds

Chebyshev-type inequalities on a finite set. Assume X is a random variable taking values
in the set {a1,@2,...,am}, and let S be a subset of {aq,...,amn}. The distribution of X
is unknown, but we are given the expected values of n functions f;:

Efi(X):bi, ’i:1,...,n. (732)
Show that the optimal value of the LP
minimize  xg + Z:;l bix;

subject to  xo + Z:;l fila)z; >1, a€S
To + Z:;l fila)z; >0, o &S,
with variables xq, ..., Zn, is an upper bound on prob(X € §), valid for all distributions

that satisfy (7.32). Show that there always exists a distribution that achieves the upper
bound.
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Chapter 8

Geometric problems

Projection on a set

The distance of a point zp € R™ to a closed set C C R", in the norm || - ||, is
defined as
dist(zo,C) = inf{||zg — 2| | z € C}.

The infimum here is always achieved. We refer to any point z € C which is closest
to xg, i.e., satisfies ||z — xo|| = dist(zg, (), as a projection of xy on C. In general
there can be more than one projection of g on C, i.e., several points in C' closest
to xg.

In some special cases we can establish that the projection of a point on a set
is unique. For example, if C' is closed and convex, and the norm is strictly convex
(e.g., the Euclidean norm), then for any x there is always exactly one z € C which
is closest to xg. As an interesting converse, we have the following result: If for every
xo there is a unique Euclidean projection of zy on C, then C' is closed and convex
(see exercise 8.2).

We use the notation Po : R™ — R"™ to denote any function for which P (xq)
is a projection of xg on C, i.e., for all xg,

Pc(l‘o) S C, ||JJO — Pc(xo)ll = diSt(xo7 C)
In other words, we have
Po(zg) = argmin{||z — ]| | z € C}.

We refer to Po as projection on C.

Example 8.1 Projection on the unit square in R?. Consider the (boundary of the)
unit square in R?, i.e., C = {z € R? | ||z||cc = 1}. We take xo = 0.

In the ¢;-norm, the four points (1,0), (0, —1), (—1,0), and (0, 1) are closest to zo = 0,
with distance 1, so we have dist(zo, C) = 1 in the ¢;-norm. The same statement holds
for the ¢o-norm.

In the foo-norm, all points in C lie at a distance 1 from xo, and dist(zo,C) = 1.
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Example 8.2 Projection onto rank-k matrices. Consider the set of m x n matrices
with rank less than or equal to k,

C={X e R™"| rank X <k},

with & < min{m,n}, and let Xy € R™*". We can find a projection of Xy on
C, in the (spectral or maximum singular value) norm | - ||2, via the singular value

decomposition. Let
”
T
Xo = g TiUV;
i=1

be the singular value decomposition of Xy, where r = rank Xy. Then the matrix

Y = Z;“:l]{k’r} oiuvl is a projection of Xy on C.

Projecting a point on a convex set

If C is convex, then we can compute the projection Pco(zo) and the distance
dist(zo,C") by solving a convex optimization problem. We represent the set C
by a set of linear equalities and convex inequalities

Ax =0, filz) <0, i=1,...,m, (8.1)

and find the projection of xy on C by solving the problem

minimize ||z — x|
subject to  f;(z) <0, i=1,...,m (8.2)
Az =0,

with variable z. This problem is feasible if and only if C is nonempty; when it is
feasible, its optimal value is dist(xg,C), and any optimal point is a projection of
g on C.

Euclidean projection on a polyhedron

The projection of g on a polyhedron described by linear inequalities Az < b can
be computed by solving the QP

minimize  ||x — x]|3
subject to Az <b.

Some special cases have simple analytical solutions.

e The Euclidean projection of z on a hyperplane C = {z | a¥x = b} is given
by
Pc(x0) = zo + (b — a"wo)a/||all3.

e The Euclidean projection of 2y on a halfspace C' = {x | a¥z < b} is given by

zo+ (b—a’xg)a/|lal|} aTzo >0
Zo alzy < b.

Po(xo) = {
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e The Euclidean projection of ¢ on a rectangle C = {z | | < 2 < u} (where
I < u) is given by

Iy 2ok <l
Po(zo)s =4 Tor e < aor < ug
Up  Tok = Ug-

Euclidean projection on a proper cone

Let x = Pk (x0) denote the Euclidean projection of a point xg on a proper cone K.

The KKT conditions of
minimize ||z — x¢|3
subject to x =g 0

are given by

T

Tz =K 0, T —x9=2, z =g+ 0, zix=0.
Introducing the notation x4 = x and z_ = z, we can express these conditions as
To =Ty —T_, zy =k 0, r_ =g+ 0, m{x,:O.

In other words, by projecting ¢ on the cone K, we decompose it into the difference
of two orthogonal elements: one nonnegative with respect to K (and which is the
projection of zg on K), and the other nonnegative with respect to K*.

Some specific examples:

e For K = R, we have Pg(xo)r = max{zo,0}. The Euclidean projection
of a vector onto the nonnegative orthant is found by replacing each negative
component with 0.

e For K = S/, and the Euclidean (or Frobenius) norm ||-|| 7, we have Px (Xo) =
Yo max{0, \; }vvl, where Xo = > i Ajv;v] is the eigenvalue decomposi-
tion of Xy. To project a symmetric matrix onto the positive semidefinite cone,
we form its eigenvalue expansion and drop terms associated with negative
eigenvalues. This matrix is also the projection onto the positive semidefinite
cone in the £5-, or spectral norm.

Separating a point and a convex set

Suppose C is a closed convex set described by the equalities and inequalities (8.1).
If g € C, then dist(zp,C) = 0, and the optimal point for the problem (8.2) is
zo. If 2o € C then dist(xzg,C') > 0, and the optimal value of the problem (8.2) is
positive. In this case we will see that any dual optimal point provides a separating
hyperplane between the point zy and the set C.

The link between projecting a point on a convex set and finding a hyperplane
that separates them (when the point is not in the set) should not be surprising.
Indeed, our proof of the separating hyperplane theorem, given in §2.5.1, relies on
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Figure 8.1 A point ¢ and its Euclidean projection Pc(zo) on a convex set C.
The hyperplane midway between the two, with normal vector Pc(zo) — xo,
strictly separates the point and the set. This property does not hold for
general norms; see exercise 8.4.

finding the Euclidean distance between the sets. If Po(xg) denotes the Euclidean
projection of xg on C, where x¢ ¢ C, then the hyperplane

(Po(z0) — z0)" (z — (1/2)(x0 + Pe(0))) = 0

(strictly) separates xg from C, as illustrated in figure 8.1. In other norms, however,
the clearest link between the projection problem and the separating hyperplane
problem is via Lagrange duality.

We first express (8.2) as

minimize  ||y||

subject to  fi(z) <0, i=1,...,m
Ax =10
o —xr =Y

with variables x and y. The Lagrangian of this problem is
Lz, y, A pv) = |yl + D Aifi(a) +v" (Az = b) + p" (20 — 2 — y)
i=1

and the dual function is

Oy = 4 0 (DI Aifie) + 07 (A = 8) 4 o~ ) ] < 1
gL ks —00 otherwise,

so we obtain the dual problem

maximize plzo +inf, (X070 Nifi(z) + v (Az — b) — p''z)
subject to A >0
el <1,

with variables A, u, v. We can interpret the dual problem as follows. Suppose A,
w, v are dual feasible with a positive dual objective value, d.e., A = 0, ||p|« < 1,
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and
plag — pla+ Z/\zfz(:z:) + v (Az—b) >0
i=1

for all . This implies that uT2zy > pu’z for € C, and therefore u defines a
strictly separating hyperplane. In particular, suppose (8.2) is strictly feasible, so
strong duality holds. If zg € C, the optimal value is positive, and any dual optimal
solution defines a strictly separating hyperplane.

Note that this construction of a separating hyperplane, via duality, works for
any norm. In contrast, the simple construction described above only works for the
Euclidean norm.

Separating a point from a polyhedron

The dual problem of

minimize  ||y||
subject to Ax <b
To—T =Y

maximize pTzo — b7\

subject to ATX = p
lplle <1
A=0

which can be further simplified as

maximize (Axg — b)TA
subject to  [|ATA|. <1
A= 0.

It is easily verified that if the dual objective is positive, then AT\ is the normal
vector to a separating hyperplane: If Az < b, then

(ATXN) Tz = AT(Az) < ATb < \T Az,

so pt = AT\ defines a separating hyperplane.

Projection and separation via indicator and support functions

The ideas described above in §8.1.1 and §8.1.2 can be expressed in a compact form
in terms of the indicator function I and the support function S of the set C,

defined as c
. T _ 0 T €
Sc(r) = sup &y, lo(z) = { too 2 dC.

The problem of projecting zy on a closed convex set C' can be expressed compactly

as
minimize ||z — x|
subject to  Ic(x) <0,
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or, equivalently, as

minimize ||y
subject to  Io(xz) <0
To—T =Y

where the variables are  and y. The dual function of this problem is

g(z,A)

inf (lyll + Me () + 2" (20 — 2 — )

_ 2lao +inf, (=272 + Ic(z)) |z« <1, A>0
B —00 otherwise

_ 2Tag—Sc(z) ||zl <1, A>0
o —00 otherwise

so we obtain the dual problem

maximize z7xy — Sc(2)

subject to ||z]|« < 1.

If z is dual optimal with a positive objective value, then z7zo > 27« for all x € C,
i.e., z defines a separating hyperplane.

Distance between sets

The distance between two sets C' and D, in a norm || - ||, is defined as
dist(C,D) = inf{|lz —y|| |z € C, y € D}.

The two sets C' and D do not intersect if dist(C,D) > 0. They intersect if
dist(C, D) = 0 and the infimum in the definition is attained (which is the case, for
example, if the sets are closed and one of the sets is bounded).

The distance between sets can be expressed in terms of the distance between a
point and a set,

dist(C, D) = dist(0, D — C),
so the results of the previous section can be applied. In this section, however, we

derive results specifically for problems involving distance between sets. This allows
us to exploit the structure of the set C' — D, and makes the interpretation easier.

Computing the distance between convex sets

Suppose C' and D are described by two sets of convex inequalities

C={z|fi(x)<0,i=1,...,m}, D={z|gi(z)<0,i=1,...,p}.
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Figure 8.2 Euclidean distance between polyhedra C' and D. The dashed line
connects the two points in C' and D, respectively, that are closest to each
other in Euclidean norm. These points can be found by solving a QP.

(We can include linear equalities, but exclude them here for simplicity.) We can
find dist(C, D) by solving the convex optimization problem

minimize ||z — y||
subject to  fi(z) <0, i=1,....m (8.3)
gz(y)goa Z:17ap

Euclidean distance between polyhedra

Let C' and D be two polyhedra described by the sets of linear inequalities A;z < by
and Aoz < bs, respectively. The distance between C' and D is the distance between
the closest pair of points, one in C' and the other in D, as illustrated in figure 8.2.
The distance between them is the optimal value of the problem

minimize ||z — yl|2
subject to  Ajz <X by (8.4)
Agy j bg.

We can square the objective to obtain an equivalent QP.

Separating convex sets

The dual of the problem (8.3) of finding the distance between two convex sets has
an interesting geometric interpretation in terms of separating hyperplanes between
the sets. We first express the problem in the following equivalent form:

minimize  |jw]|
subject to  fi(z) <0, i=1,...,m

9i(y) <0, i=1,....p
T—y=w.

(8.5)

The dual function is

m p
g\ 2z, 1) = Ilgfw (|w|| + Z Aifi(z) + Z.Uigi(y) +2l (e -y - w))
e i=1 i=1
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inf, (370, Nifi(x) + 2"x) +infy, (30 pigi(y) — 27y) 2]l <1
—00 otherwise,

which results in the dual problem

maximize inf, (370 Xifs(x) + 27a) +infy, (350 pigi(y) — 27y)
subject to  [|z][« <1 (8.6)
A=0, p=0.

We can interpret this geometrically as follows. If A\, u are dual feasible with a
positive objective value, then

m p
S Nifile)+ 2w+ pigily) — 2Ty >0
=1 i=1

for all # and y. In particular, for € C and y € D, we have 27z — 2Ty > 0, so we

see that z defines a hyperplane that strictly separates C' and D.

Therefore, if strong duality holds between the two problems (8.5) and (8.6)
(which is the case when (8.5) is strictly feasible), we can make the following con-
clusion. If the distance between the two sets is positive, then they can be strictly
separated by a hyperplane.

Separating polyhedra

Applying these duality results to sets defined by linear inequalities A;z < by and
Asx = by, we find the dual problem

maximize —bI A —blp

subject to ATA+2=0
Afp—2=0
2]l <1
A-0, p=0.

If A\, u, and z are dual feasible, then for all x € C, y € D,
2T =-NTAjx > —2\Tby, zTy = ,uTAga: < uTbg,
and, if the dual objective value is positive,
To— zTy > ATy, — uTbg > 0,

i.e., z defines a separating hyperplane.

Distance and separation via indicator and support functions

The ideas described above in §8.2.1 and §8.2.2 can be expressed in a compact form
using indicator and support functions. The problem of finding the distance between
two convex sets can be posed as the convex problem

minimize ||z — y||
subject to  Io(z) <0
Ip(y) <0,
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which is equivalent to

minimize  |lwl|
subject to  Ic(z) <0
Ip(y) <0
T—y=w.
The dual of this problem is
maximize  —Sc(—z) — Sp(z)

subject to ||z« < 1.
If 2 is dual feasible with a positive objective value, then Sp(z) < —Sc(—=2), i.e.,

sup 27z < inf 27z,
€D zel

In other words, z defines a hyperplane that strictly separates C' and D.

8.3 Euclidean distance and angle problems

Suppose aq, ..., a, is a set of vectors in R", which we assume (for now) have known
Euclidean lengths
ho=llallz, -0y b= llan]l2-

We will refer to the set of vectors as a configuration, or, when they are indepen-
dent, a basis. In this section we consider optimization problems involving various
geometric properties of the configuration, such as the Euclidean distances between
pairs of the vectors, the angles between pairs of the vectors, and various geometric
measures of the conditioning of the basis.

8.3.1 Gram matrix and realizability

The lengths, distances, and angles can be expressed in terms of the Gram matriz
associated with the vectors aq,...,a,, given by

G=AT4A, A:[al an},
so that G;; = al'a;. The diagonal entries of G are given by
Gu:l?, iZl,...,’ﬂ,

which (for now) we assume are known and fixed. The distance d;; between a; and
aj is
dij = llai — a2
= (112 + le, — 2afaj)1/2

= G+ - 2Gi;)"/2.
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Conversely, we can express G;; in terms of d;; as

2,72 _ 2
G-
e N
which we note, for future reference, is an affine function of dfj.
The correlation coefficient p;; between (nonzero) a; and a; is given by
T,. -
a; aj Gij

P = Nadlollasll ~ Uy

so that G;; = [;1;pi; is a linear function of p;;. The angle 6;; between (nonzero) a;
and a; is given by
eij = COS_1 pij = COS_I(Gij/(lilj)),

where we take cos™! p € [0, 7]. Thus, we have G;; = l;1; cos 6;;.

The lengths, distances, and angles are invariant under orthogonal transforma-
tions: If Q € R™™"™ is orthogonal, then the set of vectors Qaj, ..., Qa, has the
same Gram matrix, and therefore the same lengths, distances, and angles.

Realizability

The Gram matrix G = AT A is, of course, symmetric and positive semidefinite. The
converse is a basic result of linear algebra: A matrix G € S™ is the Gram matrix
of a set of vectors aq,...,a, if and only if G = 0. When G = 0, we can construct
a configuration with Gram matrix G by finding a matrix A with A7A = G. One
solution of this equation is the symmetric squareroot A = G*/2. When G > 0, we
can find a solution via the Cholesky factorization of G: If LLT = G, then we can
take A = L. Moreover, we can construct all configurations with the given Gram
matrix G, given any one solution A, by orthogonal transformation: If ATA = G is
any solution, then A = QA for some orthogonal matrix Q.

Thus, a set of lengths, distances, and angles (or correlation coefficients) is real-
izable, i.e., those of some configuration, if and only if the associated Gram matrix
G is positive semidefinite, and has diagonal elements 2, ..., 2.

We can use this fact to express several geometric problems as convex optimiza-
tion problems, with G € S" as the optimization variable. Realizability imposes
the constraint G = 0 and G;; =12, i = 1,...,n; we list below several other convex
constraints and objectives.

Angle and distance constraints

We can fix an angle to have a certain value, 0;; = «, via the linear equality
constraint G; = [;ljcosa. More generally, we can impose a lower and upper
bound on an angle, a < 6;; < 3, by the constraint

liljcosa > Gy > Il cos B,
which is a pair of linear inequalities on G. (Here we use the fact that cos™! is
monotone decreasing.) We can maximize or minimize a particular angle 6;;, by
minimizing or maximizing G;; (again using monotonicity of cos™1).
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In a similar way we can impose constraints on the distances. To require that
d;; lies in an interval, we use

dmin < dij < dmax <~ d2 < dfj < d2

min max
2 2, 72 2
— dmin <+ lj - 2G7] < dmax’
which is a pair of linear inequalities on G. We can minimize or maximize a distance,
by minimizing or maximizing its square, which is an affine function of G.

As a simple example, suppose we are given ranges (i.e., an interval of possible
values) for some of the angles and some of the distances. We can then find the
minimum and maximum possible value of some other angle, or some other distance,
over all configurations, by solving two SDPs. We can reconstruct the two extreme
configurations by factoring the resulting optimal Gram matrices.

Singular value and condition number constraints

The singular values of A, 01 > .-+ > o,, are the squareroots of the eigenvalues
Ay > -+ >\, of G. Therefore O'% is a convex function of GG, and 0'7% is a concave
function of G. Thus we can impose an upper bound on the maximum singular value
of A, or minimize it; we can impose a lower bound on the minimum singular value,
or maximize it. The condition number of A, o1/0,, is a quasiconvex function of G,
so we can impose a maximum allowable value, or minimize it over all configurations
that satisfy the other geometric constraints, by quasiconvex optimization.
Roughly speaking, the constraints we can impose as convex constraints on G

are those that require aq,...,a, to be a well conditioned basis.
Dual basis
When G > 0, ay,...,a, form a basis for R". The associated dual basis is by, ..., by,
where e
f%_{Oi#j
The dual basis vectors bq,...,b, are simply the rows of the matrix A=!. As a

result, the Gram matrix associated with the dual basis is G~'.
We can express several geometric conditions on the dual basis as convex con-
straints on G. The (squared) lengths of the dual basis vectors,

16i]|3 = ei G~ es,

are convex functions of G, and so can be minimized. The trace of G~!, another
convex function of G, gives the sum of the squares of the lengths of the dual basis
vectors (and is another measure of a well conditioned basis).

Ellipsoid and simplex volume

The volume of the ellipsoid {Au | ||u||2 < 1}, which gives another measure of how
well conditioned the basis is, is given by

v(det(AT A))1/2 = y(det G)1/2,
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where « is the volume of the unit ball in R"™. The log volume is therefore logy +
(1/2)log det G, which is a concave function of G. We can therefore maximize the
volume of the image ellipsoid, over a convex set of configurations, by maximizing
log det G.

The same holds for any set in R™. The volume of the image under A is its
volume, multiplied by the factor (det G)l/ 2. For example, consider the image under
A of the unit simplex conv{0,ej,...,e,}, i.e., the simplex conv{0,a,...,a,}.
The volume of this simplex is given by 7(det G)'/2, where 7 is the volume of the
unit simplex in R". We can maximize the volume of this simplex by maximizing

log det G.

Problems involving angles only

Suppose we only care about the angles (or correlation coefficients) between the
vectors, and do not specify the lengths or distances between them. In this case it is
intuitively clear that we can simply assume the vectors a; have length [, = 1. This
is easily verified: The Gram matrix has the form G = diag(l)C diag(l), where [
is the vector of lengths, and C' is the correlation matrix, .e., Cj; = cosf;;. It
follows that if G = 0 for any set of positive lengths, then G > 0 for all sets of
positive lengths, and in particular, this occurs if and only if C' = 0 (which is the
same as assuming that all lengths are one). Thus, a set of angles 6;; € [0, 7],
1,7 = 1,...,n is realizable if and only if C' > 0, which is a linear matrix inequality
in the correlation coefficients.

As an example, suppose we are given lower and upper bounds on some of the
angles (which is equivalent to imposing lower and upper bounds on the correlation
coefficients). We can then find the minimum and maximum possible value of some
other angle, over all configurations, by solving two SDPs.

Example 8.3 Bounding correlation coefficients. We consider an example in R*, where
we are given
0.6 <p12 <09, 0.8<pi13<0.9,
0.5 < p24 <0.7, —08<p3s < —-04.

To find the minimum and maximum possible values of pi4, we solve the two SDPs

(8.7)

minimize/maximize p14
subject to (8.7)
1 P12 P13 P14
piz2 1 paz poa
P13 P23 1 P34
P14 p2a p3s 1

with variables p12, p13, p14, P23, P24, p34. The minimum and maximum values (to two
significant digits) are —0.39 and 0.23, with corresponding correlation matrices

1.00 0.60 0.87 —0.39 1.00 0.71 0.80 0.23
0.60 1.00 0.33 0.50 0.71  1.00 0.31 0.59
0.87 0.33 1.00 —-0.55 |’ 0.80 0.31 1.00 —-0.40

—-0.39 0.50 -0.55 1.00 0.23 059 -0.40 1.00
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Euclidean distance problems

In a Fuclidean distance problem, we are concerned only with the distances between
the vectors, d;;, and do not care about the lengths of the vectors, or about the angles
between them. These distances, of course, are invariant not only under orthogonal
transformations, but also translation: The configuration a; = a1+b,...,a, = a,+b
has the same distances as the original configuration, for any b € R™. In particular,

for the choice .

b=—(1/n)) a; = —(1/n)AL,
i=1
we see that a; have the same distances as the original configuration, and also satisfy
Z?zl a; = 0. It follows that in a Euclidean distance problem, we can assume,
without any loss of generality, that the average of the vectors ay,...,a, is zero,
i.e., A1 = 0.

We can solve Euclidean distance problems by considering the lengths (which
cannot occur in the objective or constraints of a Euclidean distance problem) as
free variables in the optimization problem. Here we rely on the fact that there is
a configuration with distances d;; > 0 if and only if there are lengths [,...,1, for
which G = 0, where Gy; = (I7 + 13 — d7;) /2.

We define z € R" as z; = [, and D € S" by D;; = d?j (with, of course,
D;; =0). The condition that G > 0 for some choice of lengths can be expressed as

G = (217 + 127 — D)/2 = 0 for some z = 0, (8.8)

which is an LMI in D and z. A matrix D € S", with nonnegative elements,
zero diagonal, and which satisfies (8.8), is called a FEuclidean distance matriz. A
matrix is a Euclidean distance matrix if and only if its entries are the squares
of the Euclidean distances between the vectors of some configuration. (Given a
Euclidean distance matrix D and the associated length squared vector z, we can
reconstruct one, or all, configurations with the given pairwise distances using the
method described above.)

The condition (8.8) turns out to be equivalent to the simpler condition that D
is negative semidefinite on 1+, i.e.,

(8.8) <= u'Du <0 for all u with 1Tu =0
— (I—1/n)117)DI - (1/n)117) < 0.

This simple matrix inequality, along with D;; > 0, D;; = 0, is the classical char-
acterization of a Fuclidean distance matrix. To see the equivalence, recall that we
can assume A1 = 0, which implies that 17G1 = 17AT A1 = 0. It follows that
G > 0 if and only if G is positive semidefinite on 1+, i.e.,

0 < (I-@1/n)11hG(I - (1/n)117)
(1/2)(I — (1/n)117) (21" + 127 — D)(I — (1/n)117)
= —(1/2)(I = (1/n)117)D(I — (1/n)117),

which is the simplified condition.



410

8 Geometric problems

8.4

8.4.1

In summary, a matrix D € S™ is a Euclidean distance matrix, i.e., gives the
squared distances between a set of n vectors in R", if and only if

D“‘:O, z':l,...,n, Dl-jZO, i,jil,...,n,

(I —(1/n)117)D(I — (1/n)117) =<0,

which is a set of linear equalities, linear inequalities, and a matrix inequality in
D. Therefore we can express any Euclidean distance problem that is convex in the
squared distances as a convex problem with variable D € S™.

Extremal volume ellipsoids

Suppose C' C R" is bounded and has nonempty interior. In this section we consider
the problems of finding the maximum volume ellipsoid that lies inside C, and the
minimum volume ellipsoid that covers C. Both problems can be formulated as
convex programming problems, but are tractable only in special cases.

The Lowner-John ellipsoid

The minimum volume ellipsoid that contains a set C is called the Lowner-John
ellipsoid of the set C, and is denoted &j;. To characterize &), it will be convenient
to parametrize a general ellipsoid as

€={v|lAv+blo <1}, (8.9)

i.e., the inverse image of the Euclidean unit ball under an affine mapping. We can
assume without loss of generality that A € S, in which case the volume of £ is
proportional to det A~!. The problem of computing the minimum volume ellipsoid

containing C' can be expressed as

minimize logdet A~!

subject to  sup,c¢ ||Av +blj2 <1, (8.10)

where the variables are A € S™ and b € R", and there is an implicit constraint
A > 0. The objective and constraint functions are both convex in A and b, so the
problem (8.10) is convex. Evaluating the constraint function in (8.10), however,
involves solving a convex maximization problem, and is tractable only in certain
special cases.

Minimum volume ellipsoid covering a finite set

We consider the problem of finding the minimum volume ellipsoid that contains
the finite set C' = {z1,...,z,} € R". An ellipsoid covers C' if and only if it
covers its convex hull, so finding the minimum volume ellipsoid that covers C
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is the same as finding the minimum volume ellipsoid containing the polyhedron
conv{xy,...,Zm}. Applying (8.10), we can write this problem as

minimize logdet A™!

subject to [ Az, + b2 <1, i=1....m (8.11)

where the variables are A € S and b € R", and we have the implicit constraint A >
0. The norm constraints ||Az;+b|]2 < 1,4 =1,...,m, are convex inequalities in the
variables A and b. They can be replaced with the squared versions, ||Ax; +b||3 < 1,
which are convex quadratic inequalities in A and b.

Minimum volume ellipsoid covering union of ellipsoids

Minimum volume covering ellipsoids can also be computed efficiently for certain
sets C' that are defined by quadratic inequalities. In particular, it is possible to
compute the Lowner-John ellipsoid for a union or sum of ellipsoids.

As an example, consider the problem of finding the minimum volume ellip-
soid &, that contains the ellipsoids &1, ..., &, (and therefore, the convex hull of
their union). The ellipsoids &, ..., &, will be described by (convex) quadratic
inequalities:

Ei={x|aT A+ 26T 2 +¢;, <0}, i=1,...,m,
where A; € S" | . We parametrize the ellipsoid &; as

& = A{z|llAz+blla <1}
= {x|2TAT Az +2(ATD)Tz +bTb -1 <0}

where A € S™ and b € R". Now we use a result from §B.2, that & C &; if and
only if there exists a 7 > 0 such that

AQ—TAZ' Ab—’TbZ' <0
(Ab—7b)T bTb—1—7¢; | —

The volume of &} is proportional to det A~!, so we can find the minimum volume
ellipsoid that contains &1, ..., &, by solving

minimize logdet A™!
subject to 71 >0,...,7, >0
|: A2 _TiAi Ab—’Tibi
(

< ;=
Ab_Tibi)T bTb_l_Tici}_O, 1 1,...,m’

or, replacing the variable b by b = Ab,

minimize logdet A~!
subject to 71 >0,...,7, >0
A2—TZ‘AZ‘ E—Tibl‘ 0
(b—71:b)T —1—me; BT | 20, i=1,...,m,
0 b —A?

which is convex in the variables 42 € 8™, b, T1, ..., Tm.
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Figure 8.3 The outer ellipse is the boundary of the Lowner-John ellipsoid,
i.e., the minimum volume ellipsoid that encloses the points 1, . .., z¢ (shown
as dots), and therefore the polyhedron P = conv{zi,...,xs}. The smaller
ellipse is the boundary of the Lowner-John ellipsoid, shrunk by a factor of
n = 2 about its center. This ellipsoid is guaranteed to lie inside P.

Efficiency of Lowner-John ellipsoidal approximation

Let &; be the Léwner-John ellipsoid of the convex set C' C R", which is bounded
and has nonempty interior, and let z( be its center. If we shrink the Lowner-John
ellipsoid by a factor of n, about its center, we obtain an ellipsoid that lies inside
the set C:

xo + (1/TL)(51J - .’E()) Q C Q 51j.

In other words, the Lowner-John ellipsoid approximates an arbitrary convex set,
within a factor that depends only on the dimension n. Figure 8.3 shows a simple
example.

The factor 1/n cannot be improved without additional assumptions on C. Any
simplex in R™, for example, has the property that its Lowner-John ellipsoid must
be shrunk by a factor n to fit inside it (see exercise 8.13).

We will prove this efficiency result for the special case C' = conv{xy,...,Tm}.
We square the norm constraints in (8.11) and introduce variables A = A? and
b = Ab, to obtain the problem

minimize  logdet A1

< ~ e o 12
subject to x;TAz; —20Tz; +0TATb <1, i=1,...,m. (8.12)

The KKT conditions for this problem are

Z;il )\i(SCi.TiT — Ailgngzlil) = Ail, Zzn:l )\7,(171 — Ailb) =0,

N>0, xTAz; —20Tx; +0TAD <1,  i=1,...,m,
/\Z‘(l—xiTzzlxi—FQlN)T:Ei—BTzzlle)) =0, +=1,...,m.

By a suitable affine change of coordinates, we can assume that A=1Tand b=0,
i.€., the minimum volume ellipsoid is the unit ball centered at the origin. The KKT
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conditions then simplify to
m m
Z)\ixixiT:I7 Z)\Zl‘l :O7 )\i(l—a:iTxi) :0, 1= L...,m,
i=1 i=1

plus the feasibility conditions ||z;|]l2 < 1 and A; > 0. By taking the trace of
both sides of the first equation, and using complementary slackness, we also have

2211 )\i =n.
In the new coordinates the shrunk ellipsoid is a ball with radius 1/n, centered
at the origin. We need to show that

|z <1/n = x € C =conv{zy,...,Tm}.

Suppose ||z]|2 < 1/n. From the KKT conditions, we see that

m m

T = Z (2T 2y)z; = Z Ni(zTa; + 1/n)z; = Z i, (8.13)
i=1

i=1 i=1
where 1; = \j(x7x; + 1/n). From the Cauchy-Schwartz inequality, we note that

i = Xi(@" i +1/n) > Xi(—|lzl2llzill2 + 1/n) > Ai(=1/n+1/n) =0.

Furthermore

Z'“i = Z)\i(xTxi +1/n)= Z)\z/n =1.

i=1 i=1 i=1
This, along with (8.13), shows that x is a convex combination of z1, ..., Z,,, hence
xeC.

Efficiency of Lowner-John ellipsoidal approximation for symmetric sets

If the set C' is symmetric about a point zg, then the factor 1/n can be tightened

to 1/+/n:
zo + (1/vn)(&; — x0) € C C &.

Again, the factor 1/4/n is tight. The Lowner-John ellipsoid of the cube
C={zeR"| —1=xz=<1}

is the ball with radius v/n. Scaling down by 1/+/n yields a ball enclosed in C, and
touching the boundary at = = =+e;.

Approximating a norm by a quadratic norm

Let || - || be any norm on R", and let C' = {z | ||z|| < 1} be its unit ball. Let
&j = {z | 2T Az <1}, with A € 8%, be the Léwner-John ellipsoid of C. Since C
is symmetric about the origin, the result above tells us that (1/y/n)&; € C C &;.
Let || - ||1j denote the quadratic norm

2y = (=7 42)"/2,
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8.4.2

whose unit ball is &;. The inclusions (1/y/n)&; € C C &; are equivalent to the
inequalities

Izl < N2l < Vnllz]ly

for all z € R™. In other words, the quadratic norm || - || approximates the norm
|| - || within a factor of \/n. In particular, we see that any norm on R" can be
approximated within a factor of \/n by a quadratic norm.

Maximum volume inscribed ellipsoid

We now consider the problem of finding the ellipsoid of maximum volume that lies
inside a convex set C, which we assume is bounded and has nonempty interior. To
formulate this problem, we parametrize the ellipsoid as the image of the unit ball
under an affine transformation, i.e., as

€={Bu+d||lull <1}.

n

Again it can be assumed that B € S, , so the volume is proportional to det B. We
can find the maximum volume ellipsoid inside C' by solving the convex optimization
problem

maximize logdet B

subject to  supjj,,<1 lo(Bu+d) <0 (8.14)

in the variables B € S™ and d € R", with implicit constraint B > 0.

Maximum volume ellipsoid in a polyhedron
We consider the case where C' is a polyhedron described by a set of linear inequal-
ities:

C={rlalz<b,i=1,...,m}.
To apply (8.14) we first express the constraint in a more convenient form:
sup Ic(Bu+d) <0 <= sup af (Bu+d)<b;, i=1,....m
lull2<1 lull2<1

<~ HBang—i-alesz, 1=1,...,m.

We can therefore formulate (8.14) as a convex optimization problem in the variables

B and d:
minimize logdet B~}

subject to || Basll2 +a7d < by, i=1,....m. (3.15)

Maximum volume ellipsoid in an intersection of ellipsoids

We can also find the maximum volume ellipsoid £ that lies in the intersection of
m ellipsoids &1,...,En. We will describe € as € = {Bu+d | |Jullz < 1} with
B € S|, and the other ellipsoids via convex quadratic inequalities,

E={w|aT A+ 20Tz 4+ ¢, <0}, i=1,...,m,
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where A; € S’ . We first work out the condition under which & C &;. This occurs
if and only if

sup ((d+ Bu)" A;(d+ Bu) + 2b] (d + Bu) + ¢;)

flull2<1

= d"Aid+2b]d+c;+ sup (u"BA;Bu+2(A;d+b;)" Bu)
flull2<1

< 0.

From §B.1,

sup (u"BA;Bu+2(A;d+ b;)" Bu) < —(d" A;d + 2b] d + ¢;)
l[ull2<1

if and only if there exists a A\; > 0 such that

7)\7; — dTAZd — Qb?d — C; (Ald + bl)TB -0

The maximum volume ellipsoid contained in &1, ..., &, can therefore be found by
solving the problem

minimize  logdet B!
-\ — dTAzd — szTd — ¢ (Ald + bl)TB

subject to [ B(Aid + by) M\ — BAB

} >0, +1=1,....,m,

with variables B € S, d € R", and A € R™, or, equivalently,

minimize logdet B!
“Xi—ci +0FAT D, 0 (d+ A7Me)T
subject to 0 Nl B =0, i=1,...,m.
d+ A7 ', B ATt

Efficiency of ellipsoidal inner approximations

Approximation efficiency results, similar to the ones for the Lowner-John ellipsoid,
hold for the maximum volume inscribed ellipsoid. If C' C R™ is convex, bounded,
with nonempty interior, then the maximum volume inscribed ellipsoid, expanded
by a factor of n about its center, covers the set C. The factor n can be tightened
to y/n if the set C' is symmetric about a point. An example is shown in figure 8.4.

Affine invariance of extremal volume ellipsoids

The Lowner-John ellipsoid and the maximum volume inscribed ellipsoid are both
affinely invariant. If & is the Lowner-John ellipsoid of C, and T € R™™" is
nonsingular, then the Lowner-John ellipsoid of T'C is T'&;. A similar result holds
for the maximum volume inscribed ellipsoid.

To establish this result, let £ be any ellipsoid that covers C. Then the ellipsoid
TE covers TC. The converse is also true: Every ellipsoid that covers T'C' has
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8.5

8.5.1

Figure 8.4 The maximum volume ellipsoid (shown shaded) inscribed in a
polyhedron P. The outer ellipse is the boundary of the inner ellipsoid,
expanded by a factor n = 2 about its center. The expanded ellipsoid is
guaranteed to cover P.

the form T'E, where £ is an ellipsoid that covers C. In other words, the relation
E=TE gives a one-to-one correspondence between the ellipsoids covering T'C' and
the ellipsoids covering C'. Moreover, the volumes of the corresponding ellipsoids are
all related by the ratio |det T'|, so in particular, if £ has minimum volume among
ellipsoids covering C, then T'€ has minimum volume among ellipsoids covering T'C'.

Centering

Chebyshev center

Let C € R" be bounded and have nonempty interior, and x € C. The depth of a
point z € C is defined as

depth(z,C) = dist(z, R" \ O),
i.e., the distance to the closest point in the exterior of C'. The depth gives the

radius of the largest ball, centered at x, that lies in C. A Chebyshev center of the
set C' is defined as any point of maximum depth in C"

Zenheb (C) = argmax depth(z, C) = argmax dist(z, R" \ C).

A Chebyshev center is a point inside C' that is farthest from the exterior of Cj it is
also the center of the largest ball that lies inside C'. Figure 8.5 shows an example,
in which C' is a polyhedron, and the norm is Euclidean.
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Figure 8.5 Chebyshev center of a polyhedron C, in the Euclidean norm. The
center Zeheb is the deepest point inside C, in the sense that it is farthest from
the exterior, or complement, of C. The center xchen is also the center of the
largest Euclidean ball (shown lightly shaded) that lies inside C.

Chebyshev center of a convex set

When the set C' is convex, the depth is a concave function for x € C, so computing
the Chebyshev center is a convex optimization problem (see exercise 8.5). More
specifically, suppose C' C R" is defined by a set of convex inequalities:

C=A{z|fi(z) <0,..., fm(x) < 0}.
We can find a Chebyshev center by solving the problem

maximize R
subject to g;(z,R) <0, i=1,...,m, (8.16)

where g; is defined as

gi(x,R) = sup fi(z+ Ru).
[lul<1

Problem (8.16) is a convex optimization problem, since each function g; is the
pointwise maximum of a family of convex functions of z and R, hence convex.
However, evaluating g; involves solving a convex mazimization problem (either
numerically or analytically), which may be very hard. In practice, we can find the
Chebyshev center only in cases where the functions g; are easy to evaluate.

Chebyshev center of a polyhedron
Suppose C' is defined by a set of linear inequalities a] z < b;, i = 1,...,m. We
have

gi(z,R) = sup alT(x + Ru) — b; = aiTx + R||ai||« — b
[lul <1
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if R > 0, so the Chebyshev center can be found by solving the LP

maximize R

subject to  alx + Rllai|l« <bi, i=1,....,m

R>0

with variables x and R.
Euclidean Chebyshev center of intersection of ellipsoids
Let C be an intersection of m ellipsoids, defined by quadratic inequalities,

C={z|aT A +20]x+¢;<0,i=1,...,m},
where A; € S” . We have

gi(z,R) = sup ((z+ Ru)"Ai(z+ Ru)+2b] (z + Ru) + ¢;)
lull2<1
= Az + 2biTx +c;+ sup (RQUTAiu +2R(Ajx + bi)Tu) .
flullz<1

From §B.1, g;(x,R) < 0 if and only if there exists a A; such that the matrix
inequality

—xTAixi — QbZTJJ — C; — /\z R(ALJT + bl)T
holds. Using this result, we can express the Chebyshev centering problem as

maximize R
subject to 0 NI RI =0, 1=1,...,m,
x4+ A7t RI A7t
which is an SDP with variables R, A, and x. Note that the Schur complement of
A; " in the LMI constraint is equal to the lefthand side of (8.17).
8.5.2 Maximum volume ellipsoid center

The Chebyshev center T of a set C C R"™ is the center of the largest ball that
lies in C. As an extension of this idea, we define the mazimum volume ellipsoid
center of C, denoted Tp,ye, as the center of the maximum volume ellipsoid that lies
in C. Figure 8.6 shows an example, where C' is a polyhedron.

The maximum volume ellipsoid center is readily computed when C' is defined
by a set of linear inequalities, by solving the problem (8.15). (The optimal value
of the variable d € R™ is Zpye.) Since the maximum volume ellipsoid inside C' is
affine invariant, so is the maximum volume ellipsoid center.
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Figure 8.6 The lightly shaded ellipsoid shows the maximum volume ellipsoid
contained in the set C, which is the same polyhedron as in figure 8.5. Its
center Tmve is the maximum volume ellipsoid center of C.

Analytic center of a set of inequalities

The analytic center x,. of a set of convex inequalities and linear equalities,
filx) <0, ¢=1,...,m, Fr=g
is defined as an optimal point for the (convex) problem

minimize — ZL log(— fi(x))
subject to Fx = g, (515

with variable x € R"™ and implicit constraints f;(xz) < 0,i=1,...,m. The objec-
tive in (8.18) is called the logarithmic barrier associated with the set of inequalities.
We assume here that the domain of the logarithmic barrier intersects the affine set
defined by the equalities, i.e., the strict inequality system

filx) <0, i=1,...,m, Fr=g
is feasible. The logarithmic barrier is bounded below on the feasible set
C={z] filx) <0, i=1,...,m, Fz =g},

if C' is bounded.

When z is strictly feasible, i.e., Fox = g and f;(z) <0 for ¢ =1,...,m, we can
interpret — f;(z) as the margin or slack in the ith inequality. The analytic center
Zac 18 the point that maximizes the product (or geometric mean) of these slacks or
margins, subject to the equality constraints Fz = g, and the implicit constraints

The analytic center is not a function of the set C' described by the inequalities
and equalities; two sets of inequalities and equalities can define the same set, but
have different analytic centers. Still, it is not uncommon to informally use the
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term ‘analytic center of a set C” to mean the analytic center of a particular set of
equalities and inequalities that define it.

The analytic center is, however, independent of affine changes of coordinates.
It is also invariant under (positive) scalings of the inequality functions, and any
reparametrization of the equality constraints. In other words, if F' and § are such
that Fz = g if and only if F2 = ¢, and as, ..., o, > 0, then the analytic center of

a;fi(x) <0, i=1,...,m, Fz =g,
is the same as the analytic center of
fil) <0, i=1,....m, Fa=g

(see exercise 8.17).

Analytic center of a set of linear inequalities
The analytic center of a set of linear inequalities
a;frxgbi, i=1,...,m,
is the solution of the unconstrained minimization problem
minimize —> .~ log(b; — al x), (8.19)

with implicit constraint b; —alz > 0,4 = 1,...,m. If the polyhedron defined by
the linear inequalities is bounded, then the logarithmic barrier is bounded below
and strictly convex, so the analytic center is unique. (See exercise 4.2.)

We can give a geometric interpretation of the analytic center of a set of linear
inequalities. Since the analytic center is independent of positive scaling of the
constraint functions, we can assume without loss of generality that ||a;||2 = 1. In
this case, the slack b; — alx is the distance to the hyperplane H; = {z | alz =
b;}. Therefore the analytic center x,. is the point that maximizes the product of
distances to the defining hyperplanes.

Inner and outer ellipsoids from analytic center of linear inequalities

The analytic center of a set of linear inequalities implicitly defines an inscribed and
a covering ellipsoid, defined by the Hessian of the logarithmic barrier function

- Z log(b; — al'z),
i=1

evaluated at the analytic center, i.e.,

m
1
H= d%a;al, di=—————, i=1,...,m.
2 dwel =
We have Enner € P C Eouter, where
P = {z|lale<b,i=1,...,m},
8inner = {Jj | (1' - JfaC)TH(J) — xac) < 1},

Eouter = {x|x—20c)T H(x — 1) <m(m — 1)}
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Figure 8.7 The dashed lines show five level curves of the logarithmic barrier
function for the inequalities defining the polyhedron C' in figure 8.5. The
minimizer of the logarithmic barrier function, labeled xac, is the analytic
center of the inequalities. The inner ellipsoid Einner = {2 | (z — Tac)H(z —
Zac) < 1}, where H is the Hessian of the logarithmic barrier function at zac,
is shaded.

This is a weaker result than the one for the maximum volume inscribed ellipsoid,
which when scaled up by a factor of n covers the polyhedron. The inner and outer
ellipsoids defined by the Hessian of the logarithmic barrier, in contrast, are related
by the scale factor (m(m — 1))1/ ? which is always at least n.

To show that Enner € P, suppose x € Einner, i-€.,

m

(@ = Zae) "H(2 — 2ac) = > _(dia] (z — ac))?* < L.
i=1

This implies that

a?(x — Tae) <1/d; = b; — a?xac, i=1,...,m,
and therefore al x < b; for i = 1,...,m. (We have not used the fact that z,. is
the analytic center, so this result is valid if we replace x,. with any strictly feasible

point.)
To establish that P C & uter, we will need the fact that x,. is the analytic
center, and therefore the gradient of the logarithmic barrier vanishes:

i diai =0.
=1

Now assume x € P. Then

( — 20c) T H(z — Tac)

= Z(dia?(z - xaC))z
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8.6

= Y d}(1/d; — a] (z — zac))* —m
i=1
= Zd?(bi —alz)? —m
i=1
m 2
<Z d;(b; — aiTac)) -m
i=1
m m 2
= <Z d;(b; — a?xac) + Z diag(xac — x)) -m
i=1

i=1

IN

= m?—m,

which shows that & € Eyuter- (The second equality follows from the fact that
>, d;a; = 0. The inequality follows from > 1" v < (37, y:)° for y = 0. The
last equality follows from 221 d;a; = 0, and the definition of d;.)

Analytic center of a linear matrix inequality

The definition of analytic center can be extended to sets described by generalized
inequalities with respect to a cone K, if we define a logarithm on K. For example,
the analytic center of a linear matrix inequality

1 A1 +20ls+ -+ 2,4, 2 B
is defined as the solution of

minimize —logdet(B —z1A; — -+ —z,A,).

Classification

In pattern recognition and classification problems we are given two sets of points
in R", {z1,...,zx} and {y1,...,yn}, and wish to find a function f : R" — R
(within a given family of functions) that is positive on the first set and negative on
the second, i.e.,

f(z;)>0, i=1,....,N,  f(yi))<0, i=1,...,M.

If these inequalities hold, we say that f, or its O-level set {x | f(x) = 0}, separates,
classifies, or discriminates the two sets of points. We sometimes also consider weak
separation, in which the weak versions of the inequalities hold.
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Figure 8.8 The points x1,...,zN are shown as open circles, and the points
Y1,...,ym are shown as filled circles. These two sets are classified by an

affine function f, whose 0-level set (a line) separates them.

Linear discrimination

In linear discrimination, we seek an affine function f(z) = a”x — b that classifies
the points, i.e.,

atez; —b>0, i=1,...,N, aly;—b<0, i=1,..., M. (8.20)

Geometrically, we seek a hyperplane that separates the two sets of points. Since
the strict inequalities (8.20) are homogeneous in a and b, they are feasible if and
only if the set of nonstrict linear inequalities

alez; —b>1, i=1,...,N, aly;—b< -1, i=1,....M (8.21)

(in the variables a, b) is feasible. Figure 8.8 shows a simple example of two sets of
points and a linear discriminating function.

Linear discrimination alternative

The strong alternative of the set of strict inequalities (8.20) is the existence of A,
A such that

N M
A=0, A=0, (AN A0 Y Nmi=) Ay, 1TA=1") (8.22)
=1 =1

(see §5.8.3). Using the third and last conditions, we can express these alternative
conditions as

N M
A > 0, ].T)\ = 1, 5\ b 07 ].TS\ = 1, Z/\Z.Tz = Zj\zyz
i=1 i=1
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(by dividing by 17\, which is positive, and using the same symbols for the normal-
ized A and 5\) These conditions have a simple geometric interpretation: They state
that there is a point in the convex hull of both {z1,...,2zx5} and {y1,...,ym}. In
other words: the two sets of points can be linearly discriminated (i.e., discrimi-
nated by an affine function) if and only if their convex hulls do not intersect. We
have seen this result several times before.

Robust linear discrimination

The existence of an affine classifying function f(x) = a’x — b is equivalent to a
set of linear inequalities in the variables a and b that define f. If the two sets
can be linearly discriminated, then there is a polyhedron of affine functions that
discriminate them, and we can choose one that optimizes some measure of robust-
ness. We might, for example, seek the function that gives the maximum possible
‘gap’ between the (positive) values at the points x; and the (negative) values at the
points ;. To do this we have to normalize a and b, since otherwise we can scale a
and b by a positive constant and make the gap in the values arbitrarily large. This
leads to the problem

maximize ¢

subject to aTz;—b>t, i=1,...,N
aTy; —b<—t, i=1,....M
lall2 <1,

(8.23)

with variables a, b, and ¢. The optimal value t* of this convex problem (with
linear objective, linear inequalities, and one quadratic inequality) is positive if
and only if the two sets of points can be linearly discriminated. In this case the
inequality ||al|2 < 1 is always tight at the optimum, i.e., we have ||a*|]2 = 1. (See
exercise 8.23.)

We can give a simple geometric interpretation of the robust linear discrimination
problem (8.23). If ||a/ls = 1 (as is the case at any optimal point), a’z; — b is the
Euclidean distance from the point x; to the separating hyperplane H = {z |a’ 2 =
b}. Similarly, b—a”y; is the distance from the point ; to the hyperplane. Therefore
the problem (8.23) finds the hyperplane that separates the two sets of points, and
has maximal distance to the sets. In other words, it finds the thickest slab that
separates the two sets.

As suggested by the example shown in figure 8.9, the optimal value ¢* (which is
half the slab thickness) turns out to be half the distance between the convex hulls
of the two sets of points. This can be seen clearly from the dual of the robust linear
discrimination problem (8.23). The Lagrangian (for the problem of minimizing —t)
is

N M
—t+ > uit+b—a"z) + > vi(t —b+a’y) + A[lalla — 1)
i=1 =1

Minimizing over b and ¢ yields the conditions 17w = 1/2, 17v = 1/2. When these
hold, we have

M N
g(u,v,\) = inf (aT(Z VY — Zuﬂiz) + AMlallz — )‘>
i=1 i=1
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Figure 8.9 By solving the robust linear discrimination problem (8.23) we
find an affine function that gives the largest gap in values between the two
sets (with a normalization bound on the linear part of the function). Ge-
ometrically, we are finding the thickest slab that separates the two sets of
points.

M N
—A sz‘:1 Vilfi — D imq Wili ) <A
—oo otherwise.
The dual problem can then be written as
maximize — HZf\il VY — Zf\il Ui T4
2
subject to u =0, 1Tu=1/2
v=0, 1Tv=1/2.
We can interpret 221-1\;1 w;x; as a point in the convex hull of {z,...,zx} and

2 Zf\il v;y; as a point in the convex hull of {y1,...,yar}. The dual objective is to
minimize (half) the distance between these two points, i.e., find (half) the distance
between the convex hulls of the two sets.

Support vector classifier

When the two sets of points cannot be linearly separated, we might seek an affine
function that approximately classifies the points, for example, one that minimizes
the number of points misclassified. Unfortunately, this is in general a difficult
combinatorial optimization problem. One heuristic for approximate linear discrim-
ination is based on support vector classifiers, which we describe in this section.

We start with the feasibility problem (8.21). We first relax the constraints
by introducing nonnegative variables uy,...,uy and v1,...,uy, and forming the
inequalities

alez;—b>1-w;, i=1,...,N, aly;—b< —(1—wy), i=1,...,M. (8.24)
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Figure 8.10 Approximate linear discrimination via linear programming. The
points x1,..., x50, shown as open circles, cannot be linearly separated from
the points y1, ..., ys0, shown as filled circles. The classifier shown as a solid
line was obtained by solving the LP (8.25). This classifier misclassifies one
point. The dashed lines are the hyperplanes a” z — b = +1. Four points are
correctly classified, but lie in the slab defined by the dashed lines.

When v = v = 0, we recover the original constraints; by making v and v large
enough, these inequalities can always be made feasible. We can think of u; as
a measure of how much the constraint a’z; — b > 1 is violated, and similarly
for v;. Our goal is to find a, b, and sparse nonnegative u and v that satisfy the
inequalities (8.24). As a heuristic for this, we can minimize the sum of the variables
u; and v;, by solving the LP

minimize 17w+ 17w
subject to aTx; —b>1—w;, i=1,...,N

aly; —b< —(1—v), i=1,....,.M (8.25)
u>=0, v>=0.
Figure 8.10 shows an example. In this example, the affine function a”z — b mis-

classifies 1 out of 100 points. Note however that when 0 < u; < 1, the point z;
is correctly classified by the affine function a”z — b, but violates the inequality
a’z; —b > 1, and similarly for y;. The objective function in the LP (8.25) can be
interpreted as a relaxation of the number of points x; that violate a”xz; —b > 1 plus
the number of points y; that violate a”y; —b < —1. In other words, it is a relaxation
of the number of points misclassified by the function a” z — b, plus the number of
points that are correctly classified but lie in the slab defined by —1 < a2z —b < 1.

More generally, we can consider the trade-off between the number of misclas-
sified points, and the width of the slab {z | — 1 < aTz — b < 1}, which is
given by 2/||all2. The standard support vector classifier for the sets {z1,...,2n},
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Figure 8.11 Approximate linear discrimination via support vector classifier,
with v = 0.1. The support vector classifier, shown as the solid line, misclas-
sifies three points. Fifteen points are correctly classified but lie in the slab
defined by —1 < a2z — b < 1, bounded by the dashed lines.

{y1,...,yn} is defined as the solution of

minimize  [|a|ls + 7(17u + 17)

subject to aTax; —b>1—w;, i=1,...,N
aly; —b< —(1—v), i=1,....,M
u>=0, v=0,

The first term is proportional to the inverse of the width of the slab defined by
—1<aTz—b<1. The second term has the same interpretation as above, i.e., it
is a convex relaxation for the number of misclassified points (including the points
in the slab). The parameter v, which is positive, gives the relative weight of the
number of misclassified points (which we want to minimize), compared to the width
of the slab (which we want to maximize). Figure 8.11 shows an example.

Approximate linear discrimination via logistic modeling

Another approach to finding an affine function that approximately classifies two
sets of points that cannot be linearly separated is based on the logistic model
described in §7.1.1. We start by fitting the two sets of points with a logistic model.
Suppose z is a random variable with values 0 or 1, with a distribution that depends
on some (deterministic) explanatory variable u € R", via a logistic model of the
form

prob(z = 1) = (exp(a?u — b)) /(1 + exp(a’u — b))

prob(z=0)=1/(1+ exp(aTu —b)). (8.26)

Now we assume that the given sets of points, {x1,...,zx} and {y1,...,ym},
arise as samples from the logistic model. Specifically, {z1,...,zn} are the values
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of u for the N samples for which z = 1, and {y1,...,yn} are the values of u for
the M samples for which z = 0. (This allows us to have x; = y;, which would rule
out discrimination between the two sets. In a logistic model, it simply means that
we have two samples, with the same value of explanatory variable but different
outcomes.)

We can determine a and b by maximum likelihood estimation from the observed
samples, by solving the convex optimization problem

minimize —I(a,b) (8.27)
with variables a, b, where [ is the log-likelihood function

I(a,b) = "N (aTx; — b)
— Zfil log(1 + exp(a’z; — b)) — Zf\il log(1 + exp(a®y; — b))

(see §7.1.1). If the two sets of points can be linearly separated, i.e., if there exist a,
b with a”x; > b and a”'y; < b, then the optimization problem (8.27) is unbounded
below.

Once we find the maximum likelihood values of a and b, we can form a linear
classifier f(z) = a”x — b for the two sets of points. This classifier has the following
property: Assuming the data points are in fact generated from a logistic model
with parameters a and b, it has the smallest probability of misclassification, over
all linear classifiers. The hyperplane a”u = b corresponds to the points where
prob(z = 1) = 1/2, i.e., the two outcomes are equally likely. An example is shown
in figure 8.12.

Remark 8.1 Bayesian interpretation. Let x and z be two random variables, taking
values in R™ and in {0, 1}, respectively. We assume that

prob(z = 1) = prob(z =0) = 1/2,
and we denote by po(x) and pi(x) the conditional probability densities of x, given
z =0 and given z = 1, respectively. We assume that po and p; satisfy

pl(l‘) _ eaTm—b

po(z)
for some a and b. Many common distributions satisfy this property. For example,
po and p1 could be two normal densities on R™ with equal covariance matrices and
different means, or they could be two exponential densities on R’} .

It follows from Bayes’ rule that
prob(z=1|z=u) =
prob(z=0|z=u) = ——————,

from which we obtain

exp(aTu — b)
1+ exp(aTu — b)
.t
1+ exp(aTu —b)’

prob(z=1|z =)

prob(z=0|z=u) =
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Figure 8.12 Approximate linear discrimination via logistic modeling. The
points x1,..., x50, shown as open circles, cannot be linearly separated from
the points yi, ..., yso0, shown as filled circles. The maximum likelihood lo-
gistic model yields the hyperplane shown as a dark line, which misclassifies
only two points. The two dashed lines show aTu—b = +1, where the proba-
bility of each outcome, according to the logistic model, is 73%. Three points
are correctly classified, but lie in between the dashed lines.

The logistic model (8.26) can therefore be interpreted as the posterior distribution of
z, given that = = u.

Nonlinear discrimination

We can just as well seek a nonlinear function f, from a given subspace of functions,
that is positive on one set and negative on another:

f(‘ri)>07 i:17"'7N7 f(yz)<0, Z:1,,M

Provided f is linear (or affine) in the parameters that define it, these inequalities
can be solved in exactly the same way as in linear discrimination. In this section
we examine some interesting special cases.

Quadratic discrimination

Suppose we take f to be quadratic: f(z) = Pz + qTx + r. The parameters
PeS" geR" r e R must satisfy the inequalities

TP+ qTei+7r>0, i=1,...,N
yIPy; 4+ qTyi+7 <0, i=1,..., M,
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which is a set of strict linear inequalities in the variables P, ¢, r. As in linear
discrimination, we note that f is homogeneous in P, ¢, and r, so we can find a
solution to the strict inequalities by solving the nonstrict feasibility problem

eI P+ qTei+r>1, i=1,...,N
y Py +qTyi+r<-1, i=1,...,M.

The separating surface {z | 2T Pz + ¢z + r = 0} is a quadratic surface, and
the two classification regions

{z12"Pz+¢"2+r <0}, {z| 2Pz +q"2+7r >0},

are defined by quadratic inequalities. Solving the quadratic discrimination problem,
then, is the same as determining whether the two sets of points can be separated
by a quadratic surface.

We can impose conditions on the shape of the separating surface or classification
regions by adding constraints on P, ¢, and r. For example, we can require that
P < 0, which means the separating surface is ellipsoidal. More specifically, it means
that we seek an ellipsoid that contains all the points x1,...,zN, but none of the
points y1,...,yn. This quadratic discrimination problem can be solved as an SDP
feasibility problem

find P, g, r

subject to z! Pz, + ¢z, +r>1, i=1,...,N
vy Py +q"yi+r<—1, i=1,....M
P=<-I

with variables P € S™, ¢ € R", and r € R. (Here we use homogeneity in P, ¢, r
to express the constraint P < 0 as P < —1.) Figure 8.13 shows an example.

Polynomial discrimination

We consider the set of polynomials on R™ with degree less than or equal to d:

f(’l}) = Z a’il"'id‘r’il T x:zn'

i1+t <d

We can determine whether or not two sets {x1,...,2x} and {y1,...,ym} can be
separated by such a polynomial by solving a set of linear inequalities in the variables
@i, ...i;- Geometrically, we are checking whether the two sets can be separated by
an algebraic surface (defined by a polynomial of degree less than or equal to d).

As an extension, the problem of determining the minimum degree polynomial on
R"™ that separates two sets of points can be solved via quasiconvex programming,
since the degree of a polynomial is a quasiconvex function of the coefficients. This
can be carried out by bisection on d, solving a feasibility linear program at each
step. An example is shown in figure 8.14.
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Figure 8.13 Quadratic discrimination, with the condition that P < 0. This
means that we seek an ellipsoid containing all of x; (shown as open circles)
and none of the y; (shown as filled circles). This can be solved as an SDP

feasibility problem.

Figure 8.14 Minimum degree polynomial discrimination in R?. In this ex-
ample, there exists no cubic polynomial that separates the points zi,...,xn
(shown as open circles) from the points y1,...,ynm (shown as filled circles),
but they can be separated by fourth-degree polynomial, the zero level set of
which is shown.
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8.7

8.7.1

Placement and location

In this section we discuss a few variations on the following problem. We have
N points in R? or R3, and a list of pairs of points that must be connected by
links. The positions of some of the N points are fixed; our task is to determine the
positions of the remaining points, i.e., to place the remaining points. The objective
is to place the points so that some measure of the total interconnection length of
the links is minimized, subject to some additional constraints on the positions.
As an example application, we can think of the points as locations of plants or
warehouses of a company, and the links as the routes over which goods must be
shipped. The goal is to find locations that minimize the total transportation cost.
In another application, the points represent the position of modules or cells on an
integrated circuit, and the links represent wires that connect pairs of cells. Here
the goal might be to place the cells in such a way that the total length of wire used
to interconnect the cells is minimized.

The problem can be described in terms of an undirected graph with N nodes,
representing the N points. With each node we associate a variable z; € R*, where
k = 2 or k = 3, which represents its location or position. The problem is to

minimize
> filwiay)

(i.5)€A

where A is the set of all links in the graph, and f;; : R* x R* - R is a cost
function associated with arc (i, 7). (Alternatively, we can sum over all ¢ and j, or
over ¢ < j, and simply set f;; = 0 when links ¢ and j are not connected.) Some of
the coordinate vectors x; are given. The optimization variables are the remaining
coordinates. Provided the functions f;; are convex, this is a convex optimization
problem.

Linear facility location problems

In the simplest version of the problem the cost associated with arc (i,7) is the

distance between nodes ¢ and j: f;;(x;, x;) = ||z; — x;||, i.e., we minimize
Do e =l
(i.5)€A

We can use any norm, but the most common applications involve the Euclidean
norm or the £1-norm. For example, in circuit design it is common to route the wires
between cells along piecewise-linear paths, with each segment either horizontal or
vertical. (This is called Manhattan routing, since paths along the streets in a city
with a rectangular grid are also piecewise-linear, with each street aligned with one
of two orthogonal axes.) In this case, the length of wire required to connect cell i
and cell j is given by |lz; — z;]1.

We can include nonnegative weights that reflect differences in the cost per unit
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distance along different arcs:
> willzi - ).
(i,j)€A

By assigning a weight w;; = 0 to pairs of nodes that are not connected, we can
express this problem more simply using the objective

> wijllwi = ]l (8.28)

i<j

This placement problem is convex.

Example 8.4 One free point. Consider the case where only one point (u,v) € R? is
free, and we minimize the sum of the distances to fixed points (u1,v1),..., (uk,VK).

e /1-norm. We can find a point that minimizes

K
D (=il + v —wvil)
i=1

analytically. An optimal point is any median of the fixed points. In other words,
u can be taken to be any median of the points {u1,...,ux}, and v can be taken
to be any median of the points {v1,...,vx}. (If K is odd, the minimizer is
unique; if K is even, there can be a rectangle of optimal points.)

e FEuclidean norm. The point (u,v) that minimizes the sum of the Euclidean

distances,
K

S (=) + (w—v)?) ',

is called the Weber point of the given fixed points.

Placement constraints

We now list some interesting constraints that can be added to the basic placement
problem, preserving convexity. We can require some positions z; to lie in a specified
convex set, e.g., a particular line, interval, square, or ellipsoid. We can constrain
the relative position of one point with respect to one or more other points, for
example, by limiting the distance between a pair of points. We can impose relative
position constraints, e.g., that one point must lie to the left of another point.

The bounding box of a group of points is the smallest rectangle that contains
the points. We can impose a constraint that limits the points z1, ..., z, (say) to lie
in a bounding box with perimeter not exceeding Pp,.x, by adding the constraints

u=<x; <v, i=1,...,p, 217 (v — u) < Paax,

where u, v are additional variables.
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8.7.3

Nonlinear facility location problems

More generally, we can associate a cost with each arc that is a nonlinear increasing
function of the length, i.e.,

minimize 37, _; wi;h(|lz; — ;)

where h is an increasing (on Ry) and convex function, and w;; > 0. We call this
a nonlinear placement or nonlinear facility location problem.
One common example uses the Euclidean norm, and the function h(z) = 22,

i.e., we minimize
2
> willi — .
i<j
This is called a quadratic placement problem. The quadratic placement problem
can be solved analytically when the only constraints are linear equalities; it can be
solved as a QP if the constraints are linear equalities and inequalities.

Example 8.5 One free point. Consider the case where only one point z is free, and we
minimize the sum of the squares of the Euclidean distances to fixed points x1, ..., Tk,

lz =1 ]l3 + [l — @25+ + |z — 2x 3.

Taking derivatives, we see that the optimal z is given by

1
7@+ 22t tak),

i.e., the average of the fixed points.

Some other interesting possibilities are the ‘deadzone’ function h with deadzone
width 2+, defined as
<
h(z) = { 0 2] <7

|z =1 [zl =7,

and the ‘quadratic-linear’ function h, defined as

22 2] <
hz) _{ 29]z] =42 |z = .

Example 8.6 We consider a placement problem in R? with 6 free points, 8 fixed
points, and 27 links. Figures 8.15-8.17 show the optimal solutions for the criteria

oo lmi—alles > M-l > -l

(i,7)€A (i,7)€A (i,7)€A

i.e., using the penalty functions h(z) = z, h(z) = 2%, and h(z) = z*. The figures also
show the resulting distributions of the link lengths.

Comparing the results, we see that the linear placement concentrates the free points in
a small area, while the quadratic and fourth-order placements spread the points over
larger areas. The linear placement includes many very short links, and a few very long
ones (3 lengths under 0.2 and 2 lengths above 1.5.). The quadratic penalty function
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Figure 8.15 Linear placement. Placement problem with 6 free points (shown
as dots), 8 fixed points (shown as squares), and 27 links. The coordinates of
the free points minimize the sum of the Euclidean lengths of the links. The
right plot is the distribution of the 27 link lengths. The dashed curve is the
(scaled) penalty function h(z) = z.
1f = 7 5
: 4l - -
3, — — —
0f ERNE 1 g
. 4 f"‘"‘ 3 _E‘ p P
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Figure 8.16 Quadratic placement. Placement that minimizes the sum of
squares of the Euclidean lengths of the links, for the same data as in fig-
ure 8.15. The dashed curve is the (scaled) penalty function h(z) = 2.
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8.7.4

SN SR
|
|

)

-1 0 1 0 0.5 1 1.5

Figure 8.17 Fourth-order placement. Placement that minimizes the sum of
the fourth powers of the Euclidean lengths of the links. The dashed curve
is the (scaled) penalty function h(z) = 2z*.

puts a higher penalty on long lengths relative to short lengths, and for lengths under
0.1, the penalty is almost negligible. As a result, the maximum length is shorter (less
than 1.4), but we also have fewer short links. The fourth-order function puts an even
higher penalty on long lengths, and has a wider interval (between zero and about
0.4) where it is negligible. As a result, the maximum length is shorter than for the
quadratic placement, but we also have more lengths close to the maximum.

Location problems with path constraints

Path constraints

A p-link path along the points x1,...,xn is described by a sequence of nodes,
i0,-.-,ip € {1,..., N}. The length of the path is given by

|z, = @ipl| + |2iy — @4y | + -+ + |20, — @i, I,

which is a convex function of x1, ...,z N, so imposing an upper bound on the length
of a path is a convex constraint. Several interesting placement problems involve
path constraints, or have an objective based on path lengths. We describe one
typical example, in which the objective is based on a maximum path length over a
set of paths.

Minimax delay placement

We consider a directed acyclic graph with nodes 1,..., N, and arcs or links repre-
sented by a set A of ordered pairs: (i,5) € A if and only if an arc points from 4
to j. We say node i is a source node if no arc A points to it; it is a sink node or
destination node if no arc in A leaves from it. We will be interested in the maximal
paths in the graph, which begin at a source node and end at a sink node.

The arcs of the graph are meant to model some kind of flow, say of goods or
information, in a network with nodes at positions z1,...,zy. The flow starts at
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a source node, then moves along a path from node to node, ending at a sink or
destination node. We use the distance between successive nodes to model prop-
agation time, or shipment time, of the goods between nodes; the total delay or
propagation time of a path is (proportional to) the sum of the distances between
successive nodes.

Now we can describe the minimax delay placement problem. Some of the node
locations are fixed, and the others are free, i.e., optimization variables. The goal
is to choose the free node locations in order to minimize the maximum total delay,
for any path from a source node to a sink node. Evidently this is a convex problem,
since the objective

Tmax = max{||x;, — 24| + -+ ||z, — 24, | G0,...,%p is a source-sink path}
(8.29)
is a convex function of the locations z1,...,zN.

While the problem of minimizing (8.29) is convex, the number of source-sink
paths can be very large, exponential in the number of nodes or arcs. There is
a useful reformulation of the problem, which avoids enumerating all sink-source
paths.

We first explain how we can evaluate the maximum delay Ty, far more ef-
ficiently than by evaluating the delay for every source-sink path, and taking the
maximum. Let 7, be the maximum total delay of any path from node k to a sink
node. Clearly we have 7, = 0 when k is a sink node. Consider a node k, which has
outgoing arcs to nodes ji,...,J,. For a path starting at node £ and ending at a
sink node, its first arc must lead to one of the nodes ji, ..., j,. If such a path first
takes the arc leading to j;, and then takes the longest path from there to a sink
node, the total length is

[ =l + 75,

i.e., the length of the arc to j;, plus the total length of the longest path from j; to
a sink node. It follows that the maximum delay of a path starting at node k and
leading to a sink node satisfies

T = max{||z;, — x| + 75, |25, — 2kl + 75, ) (8.30)

(This is a simple dynamic programming argument. )

The equations (8.30) give a recursion for finding the maximum delay from any
node: we start at the sink nodes (which have maximum delay zero), and then
work backward using the equations (8.30), until we reach all source nodes. The
maximum delay over any such path is then the maximum of all the 7, which will
occur at one of the source nodes. This dynamic programming recursion shows
how the maximum delay along any source-sink path can be computed recursively,
without enumerating all the paths. The number of arithmetic operations required
for this recursion is approximately the number of links.

Now we show how the recursion based on (8.30) can be used to formulate the
minimax delay placement problem. We can express the problem as

minimize max{7; | k a source node}
subject to T, =0, k a sink node
T, = max{||z; — zx|| + 7, | there is an arc from k to j},



438

8 Geometric problems

8.8

with variables 71,...,7ny and the free positions. This problem is not convex, but
we can express it in an equivalent form that is convex, by replacing the equality
constraints with inequalities. We introduce new variables 71, . .., Tn, which will be
upper bounds on 7y,..., 7y, respectively. We will take T, = 0 for all sink nodes,
and in place of (8.30) we take the inequalities

Tj, > max{||zj, — all + Tj,, - - llj, — zell + 15, }-
If these inequalities are satisfied, then T} > 7. Now we form the problem

minimize max{T} | k a source node}
subject to Tj =0, k a sink node
Ty, > max{||z; — x| + T; | there is an arc from k to j}.

This problem, with variables T4, ..., Tn and the free locations, is convex, and solves
the minimax delay location problem.

Floor planning

In placement problems, the variables represent the coordinates of a number of
points that are to be optimally placed. A floor planning problem can be considered
an extension of a placement problem in two ways:

e The objects to be placed are rectangles or boxes aligned with the axes (as
opposed to points), and must not overlap.

e Each rectangle or box to be placed can be reconfigured, within some limits.
For example we might fix the area of each rectangle, but not the length and
height separately.

The objective is usually to minimize the size (e.g., area, volume, perimeter) of the
bounding box, which is the smallest box that contains the boxes to be configured
and placed.

The non-overlap constraints make the general floor planning problem a compli-
cated combinatorial optimization problem or rectangle packing problem. However,
if the relative positioning of the boxes is specified, several types of floor planning
problems can be formulated as convex optimization problems. We explore some
of these in this section. We consider the two-dimensional case, and make a few
comments on extensions to higher dimensions (when they are not obvious).

We have N cells or modules C1,...,Cy that are to be configured and placed
in a rectangle with width W and height H, and lower left corner at the position
(0,0). The geometry and position of the ith cell is specified by its width w; and
height h;, and the coordinates (z;,y;) of its lower left corner. This is illustrated in
figure 8.18.

The variables in the problem are xz;, y;, w;, h; for i = 1,... N, and the width
W and height H of the bounding rectangle. In all floor planning problems, we
require that the cells lie inside the bounding rectangle, i.e.,

x; >0, y; > 0, z;, +w; < W, yi +h; < H, i=1,...,N. (831)
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w;

(zi,yi)

w

Figure 8.18 Floor planning problem. Non-overlapping rectangular cells are
placed in a rectangle with width W, height H, and lower left corner at (0, 0).
The ith cell is specified by its width w;, height h;, and the coordinates of its
lower left corner, (x;,y:).

We also require that the cells do not overlap, except possibly on their boundaries:
int (C'Z N CJ) =0 fori £ 4.

(Tt is also possible to require a positive minimum clearance between the cells.) The
non-overlap constraint int(C; N C;) = 0 holds if and only if for ¢ # j,

C; is left of Cj, or C} is right of C, or Cj is below Cj, or C; is above Cj.
These four geometric conditions correspond to the inequalities
2z +w; < xy, or vy +wy < xy, or y; +hy <y, oory; +hy <y, (8.32)

at least one of which must hold for each 7 # j. Note the combinatorial nature of
these constraints: for each pair i # j, at least one of the four inequalities above
must hold.

Relative positioning constraints

The idea of relative positioning constraints is to specify, for each pair of cells,
one of the four possible relative positioning conditions, i.e., left, right, above, or
below. One simple method to specify these constraints is to give two relations on
{1,...,N}: £ (meaning ‘left of’) and B (meaning ‘below’). We then impose the
constraint that C; is to the left of C; if (¢,j) € £, and C; is below Cj if (i,7) € B.
This yields the constraints

T +w; < xj for (’L,]) eL, yi +hi < Yj for (27]) e B, (833)
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for i,j5 = 1,...,N. To ensure that the relations £ and B specify the relative
positioning of each pair of cells, we require that for each (¢,7) with ¢ # j, one of
the following holds:

(i,5) € L, (4,4) € L, (i,7) € B, (4,1) € B,

and that (4,9) € L, (4,4) & B. The inequalities (8.33) are a set of N(N —1)/2 linear
inequalities in the variables. These inequalities imply the non-overlap inequali-
ties (8.32), which are a set of N(IN — 1)/2 disjunctions of four linear inequalities.

We can assume that the relations £ and B are anti-symmetric (i.e., (i,j) €
L = (j,i) € £) and transitive (i.e., (i,5) € L, (5, k) € L = (i,k) € L£). (If this
were not the case, the relative positioning constraints would clearly be infeasible.)
Transitivity corresponds to the obvious condition that if cell C; is to the left of cell
C, which is to the left of cell Cy, then cell C; must be to the left of cell Cj. In
this case the inequality corresponding to (i,k) € L is redundant; it is implied by
the other two. By exploiting transitivity of the relations £ and B we can remove
redundant constraints, and obtain a compact set of relative positioning inequalities.

A minimal set of relative positioning constraints is conveniently described using
two directed acyclic graphs H and V (for horizontal and vertical). Both graphs have
N nodes, corresponding to the N cells in the floor planning problem. The graph
‘H generates the relation £ as follows: we have (i,j) € L if and only if there is
a (directed) path in H from 4 to j. Similarly, the graph V generates the relation
B: (i,7) € B if and only if there is a (directed) path in V from i to j. To ensure
that a relative positioning constraint is given for every pair of cells, we require that
for every pair of cells, there is a directed path from one to the other in one of the
graphs.

Evidently, we only need to impose the inequalities that correspond to the edges
of the graphs H and V; the others follow from transitivity. We arrive at the set of
inequalities

x; +w; < xj for (4,5) € H, yi + h; <y for (¢,7) €V, (8.34)

which is a set of linear inequalities, one for each edge in ‘H and V. The set of
inequalities (8.34) is a subset of the set of inequalities (8.33), and equivalent.

In a similar way, the 4N inequalities (8.31) can be reduced to a minimal, equiv-
alent set. The constraint x; > 0 only needs to be imposed on the left-most cells,
i.e., for i that are minimal in the relation £. These correspond to the sources in
the graph H, i.e., those nodes that have no edges pointing to them. Similarly, the
inequalities x; + w; < W only need to be imposed for the right-most cells. In the
same way the vertical bounding box inequalities can be pruned to a minimal set.
This yields the minimal equivalent set of bounding box inequalities

x; > 0 for ¢ £ minimal, r; +w; < W for i £ maximal,

y; > 0 for ¢ B minimal, yi + h; < H for i B maximal. (8.35)

A simple example is shown in figure 8.19. In this example, the £ minimal or
left-most cells are Cy, Cs, and Cy, and the only right-most cell is C5. The minimal
set of inequalities specifying the horizontal relative positioning is given by

x1 >0, 9 >0, x4 >0, 5 +ws < W, 1 +wy < T3,
T2 +we < T3, r3 +wsz < s, Tq +wy < 5.
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Figure 8.19 Example illustrating the horizontal and vertical graphs H and
V that specify the relative positioning of the cells. If there is a path from
node i to node j in H, then cell ¢ must be placed to the left of cell j. If there
is a path from node i to node j in V, then cell i must be placed below cell

j. The floorplan shown at right satisfies the relative positioning specified by
the two graphs.

The minimal set of inequalities specifying the vertical relative positioning is given
by

y2 > 0, y3 >0, ys > 0, ya+hs < H, ys +hs < H,
Y2 + ha <, y1 + h1 < ya, y3 + hs < yq.

Floor planning via convex optimization

In this formulation, the variables are the bounding box width and height W and
H, and the cell widths, heights, and positions: w;, h;, x;, and w;, fori =1,... N.
We impose the bounding box constraints (8.35) and the relative positioning con-
straints (8.34), which are linear inequalities. As objective, we take the perimeter
of the bounding box, i.e., 2(W + H), which is a linear function of the variables.
We now list some of the constraints that can be expressed as convex inequalities
or linear equalities in the variables.

Minimum spacing

We can impose a minimum spacing p > 0 between cells by changing the relative
position constraints from z; + w; < z; for (4,j) € H, to x; + w; + p < z; for
(i,4) € H, and similarly for the vertical graph. We can have a different minimum
spacing associated with each edge in H and V. Another possibility is to fix W and
H, and maximize the minimum spacing p as objective.
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Minimum cell area

For each cell we specify a minimum area, i.e., we require that w;h; > A;, where
A; > 0. These minimum cell area constraints can be expressed as convex inequali-

ties in several ways, e.g., w; > A;/h;, (wihy)'/? > A3/2, or log w; +log h; > log A;.
Aspect ratio constraints

We can impose upper and lower bounds on the aspect ratio of each cell, i.e.,
li < hijw; < u,.

Multiplying through by w; transforms these constraints into linear inequalities. We
can also fix the aspect ratio of a cell, which results in a linear equality constraint.

Alignment constraints

We can impose the constraint that two edges, or a center line, of two cells are
aligned. For example, the horizontal center line of cell ¢ aligns with the top of cell
j when

Yi +wi/2=y; + w;.

These are linear equality constraints. In a similar way we can require that a cell is
flushed against the bounding box boundary.

Symmetry constraints

We can require pairs of cells to be symmetric about a vertical or horizontal axis,
that can be fixed or floating (i.e., whose position is fixed or not). For example, to
specify that the pair of cells 7 and j are symmetric about the vertical axis ¢ = Xaxis,
we impose the linear equality constraint

Taxis — (T + Wi /2) = &) + W, /2 — Taxis.

We can require that several pairs of cells be symmetric about an unspecified vertical
axis by imposing these equality constraints, and introducing x.4is as a new variable.

Similarity constraints

We can require that cell ¢ be an a-scaled translate of cell j by the equality con-
straints w; = aw;, h; = ah;. Here the scaling factor a must be fixed. By imposing
only one of these constraints, we require that the width (or height) of one cell be
a given factor times the width (or height) of the other cell.

Containment constraints

We can require that a particular cell contains a given point, which imposes two lin-
ear inequalities. We can require that a particular cell lie inside a given polyhedron,
again by imposing linear inequalities.
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Distance constraints

We can impose a variety of constraints that limit the distance between pairs of
cells. In the simplest case, we can limit the distance between the center points
of cell ¢ and j (or any other fixed points on the cells, such as lower left corners).
For example, to limit the distance between the centers of cells ¢ and j, we use the
(convex) inequality

[(zi +wi/2,yi + hi/2) = (x5 +w;/2,y; + hj/2)|| < Dij.

As in placement problems, we can limit sums of distances, or use sums of distances
as the objective.

We can also limit the distance dist(C;, C;) between cell ¢ and cell 7, i.e., the
minimum distance between a point in cell ¢ and a point in cell j. In the general
case this can be done as follows. To limit the distance between cells ¢ and j in the
norm || - ||, we can introduce four new variables w;, v;, u;, v;. The pair (u;,v;)
will represent a point in C;, and the pair (u;,v;) will represent a point in C;. To
ensure this we impose the linear inequalities

z; < u; <yt wy, yi < v <y + h,
and similarly for cell j. Finally, to limit dist(C;, C;), we add the convex inequality
[(ui, vi) = (uj, v5) || < Dij.

In many specific cases we can express these distance constraints more efficiently,
by exploiting the relative positioning constraints or deriving a more explicit formu-
lation. As an example consider the /,,-norm, and suppose cell i lies to the left of
cell j (by a relative positioning constraint). The horizontal displacement between
the two cells is x; — (2; + w;) Then we have dist(C;, C;) < D;; if and only if

xj; — (2 +w;) < Dy, yj — (yi + hi) < Dyj, yi — (y; + hy) < Dyj.

The first inequality states that the horizontal displacement between the right edge
of cell 7 and the left edge of cell j does not exceed D;;. The second inequality
requires that the bottom of cell j is no more than D;; above the top of cell 4, and
the third inequality requires that the bottom of cell ¢ is no more than D;; above the
top of cell j. These three inequalities together are equivalent to dist(C;, C;) < D;;.
In this case, we do not need to introduce any new variables.

We can limit the ¢1- (or £2-) distance between two cells in a similar way. Here
we introduce one new variable d,, which will serve as a bound on the vertical
displacement between the cells. To limit the ¢;-distance, we add the constraints

yjf(yi+hi)§dv7 yz’*(ijth)de, deO

and the constraints
Ty — (.’EZ —l—wz) + dy S DU

(The first term is the horizontal displacement and the second is an upper bound
on the vertical displacement.) To limit the Euclidean distance between the cells,
we replace this last constraint with

(z; — (z: + w;))? + d < D3
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Figure 8.20 Four instances of an optimal floor plan, using the relative po-
sitioning constraints shown in figure 8.19. In each case the objective is to
minimize the perimeter, and the same minimum spacing constraint between
cells is imposed. We also require the aspect ratios to lie between 1/5 and 5.
The four cases differ in the minimum areas required for each cell. The sum
of the minimum areas is the same for each case.

Example 8.7 Figure 8.20 shows an example with 5 cells, using the ordering constraints
of figure 8.19, and four different sets of constraints. In each case we impose the
same minimum required spacing constraint, and the same aspect ratio constraint
1/5 < w;/h; < 5. The four cases differ in the minimum required cell areas A;. The
values of A; are chosen so that the total minimum required area Zle A; is the same
for each case.

Floor planning via geometric programming

The floor planning problem can also be formulated as a geometric program in the
variables z;, y;, w;, h;, W, H. The objectives and constraints that can be handled
in this formulation are a bit different from those that can be expressed in the convex
formulation.

First we note that the bounding box constraints (8.35) and the relative po-
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sitioning constraints (8.34) are posynomial inequalities, since the lefthand sides
are sums of variables, and the righthand sides are single variables, hence monomi-
als. Dividing these inequalities by the righthand side yields standard posynomial
inequalities.

In the geometric programming formulation we can minimize the bounding box
area, since W H is a monomial, hence posynomial. We can also exactly specify
the area of each cell, since w;h; = A; is a monomial equality constraint. On the
other hand alignment, symmetry, and distance constraints cannot be handled in
the geometric programming formulation. Similarity, however, can be; indeed it
is possible to require that one cell be similar to another, without specifying the
scaling ratio (which can be treated as just another variable).
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Exercises

Projection on a set

8.1 Uniqueness of projection. Show that if C' C R" is nonempty, closed and convex, and the
norm || - || is strictly convex, then for every zo there is exactly one z € C closest to zo. In
other words the projection of o on C is unique.

8.2 [Web94, Val64] Chebyshev characterization of convezity. A set C € R"™ is called a Cheby-
shev set if for every zo € R", there is a unique point in C closest (in Euclidean norm)
to zo. From the result in exercise 8.1, every nonempty, closed, convex set is a Chebyshev
set. In this problem we show the converse, which is known as Motzkin’s theorem.

Let C € R"™ be a Chebyshev set.

(a) Show that C is nonempty and closed.

(b) Show that Pc, the Euclidean projection on C, is continuous.

(c¢) Suppose zg ¢ C. Show that Po(xz) = Pco(zo) for all = 0zo + (1 — 0)Po(xo) with
0<0<1.

(d) Suppose zg ¢ C. Show that Pc(x) = Pco(zo) for all x = 0zo + (1 — 0) Pc(x0) with
0>1.

(e) Combining parts (c) and (d), we can conclude that all points on the ray with base
Pc(x0) and direction zo — Pco(zo) have projection Pco(zo). Show that this implies
that C is convex.

8.3 Fuclidean projection on proper cones.
(a) Nonnegative orthant. Show that Euclidean projection onto the nonnegative orthant
is given by the expression on page 399.

(b) Positive semidefinite cone. Show that Euclidean projection onto the positive semidef-
inite cone is given by the expression on page 399.

(¢) Second-order cone. Show that the Euclidean projection of (zo,%o) on the second-

order cone
K ={(z,t) e R"" | [|z]]2 < t}
is given by
0 llzoll2 < —to
Pr (xo,t0) = { (zo, to) lzoll2 < to
(1/2)(1 + to/||zoll2) (2o, lzoll2)  [lzoll2 > [to].

8.4 The Euclidean projection of a point on a convex set yields a simple separating hyperplane
(Pe(@o) — 20)" (z — (1/2)(w0 + Pe(x0))) = 0.

Find a counterexample that shows that this construction does not work for general norms.

8.5 [HUL93, volume 1, page 154] Depth function and signed distance to boundary. Let C C R"™
be a nonempty convex set, and let dist(x,C) be the distance of x to C in some norm.
We already know that dist(z, C) is a convex function of .

(a) Show that the depth function,
depth(z, C) = dist(z, R" \ C),
is concave for z € C.
(b) The signed distance to the boundary of C' is defined as
dist(z, C) zgC
s(z) = { —depth(z,C) zeC.

Thus, s(z) is positive outside C, zero on its boundary, and negative on its interior.
Show that s is a convex function.
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8.6

8.7

8.8

8.9

8.10

Distance between sets

Let C, D be convex sets.

(a) Show that dist(C,z + D) is a convex function of z.
(b) Show that dist(¢tC,z + tD) is a convex function of (x,t) for ¢t > 0.

Separation of ellipsoids. Let £ and &2 be two ellipsoids defined as
Si={z|(@—2)" Prl(e—m) <1}, &E={z|(@—a) P (z—1) <1},
where P, P> € S" . Show that & N & = @ if and only if there exists an a € R™ with
1P all> + [[P{?all2 < a” (21 = z2).
Intersection and containment of polyhedra. Let P1 and P2 be two polyhedra defined as
P ={z | Az < b}, Pr={z| Fz < g},

with A € R™*™, b€ R™, F € RP*", g € R?. Formulate each of the following problems
as an LP feasibility problem, or a set of LP feasibility problems.

(a) Find a point in the intersection P N Pa.
(b) Determine whether P; C Ps.

For each problem, derive a set of linear inequalities and equalities that forms a strong
alternative, and give a geometric interpretation of the alternative.
Repeat the question for two polyhedra defined as

P1 = conv{v,...,vk}, P2 = conv{ws,...,wr}.

Euclidean distance and angle problems

Closest Fuclidean distance matriz to given data. We are given data Jij, fori,j=1,...,n,
which are corrupted measurements of the Euclidean distances between vectors in R*:

dij = ||zi — x4z +viy, 4,i=1,...,n,

where v;; is some noise or error. These data satisfy sz‘j > 0 and sz‘j = dji, for all 4, 5. The
dimension k is not specified.
Show how to solve the following problem using convex optimization. Find a dimension
k and z1,...,7, € R* so that szzl(di]‘ — d;;)? is minimized, where d;; = ||z — ||z,
i,7 =1,...,n. In other words, given some data that are approximate Euclidean distances,
you are to find the closest set of actual Euclidean distances, in the least-squares sense.
Minimaz angle fitting. Suppose that v1,...,ym € RF are affine functions of a variable
zeR™

vy =Aix+b;, i=1,...,m,
and z1,. .., zm € R* are given nonzero vectors. We want to choose the variable z, subject
to some convex constraints, (e.g., linear inequalities) to minimize the maximum angle
between y; and z;,

max{Z(y1,21)y- -+, L(Ym,2m)}
The angle between nonzero vectors is defined as usual:

T
u v
/(u,v) = cos ! ()
’ l[ullzllv]l2 ) °

where we take cos™'(a) € [0,7]. We are only interested in the case when the optimal
objective value does not exceed 7 /2.

Formulate this problem as a convex or quasiconvex optimization problem. When the
constraints on z are linear inequalities, what kind of problem (or problems) do you have
to solve?
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Smallest Fuclidean cone containing given points. In R", we define a Fuclidean cone, with
center direction ¢ # 0, and angular radius 0, with 0 < 6 < 7/2, as the set

{zr e R" | £(c,z) < 0}.

(A Euclidean cone is a second-order cone, i.e., it can be represented as the image of the
second-order cone under a nonsingular linear mapping.)

Let ai,...,am € R". How would you find the Euclidean cone, of smallest angular radius,
that contains ai,...,an? (In particular, you should explain how to solve the feasibility
problem, i.e., how to determine whether there is a Euclidean cone which contains the
points.)

Extremal volume ellipsoids

Show that the maximum volume ellipsoid enclosed in a set is unique. Show that the
Lowner-John ellipsoid of a set is unique.

Léwner-John ellipsoid of a simplex. In this exercise we show that the Lowner-John el-
lipsoid of a simplex in R™ must be shrunk by a factor n to fit inside the simplex. Since
the Lowner-John ellipsoid is affinely invariant, it is sufficient to show the result for one
particular simplex.

Derive the Lowner-John ellipsoid & for the simplex C' = conv{0,eq,...,e,}. Show that
&3 must be shrunk by a factor 1/n to fit inside the simplex.

Efficiency of ellipsoidal inner approzimation. Let C be a polyhedron in R™ described as
C = {z | Az < b}, and suppose that {z | Az < b} is nonempty.
(a) Show that the maximum volume ellipsoid enclosed in C, expanded by a factor n
about its center, is an ellipsoid that contains C'.

(b) Show that if C' is symmetric about the origin, i.e., of the form C = {z | -1 < Az =<
1}, then expanding the maximum volume inscribed ellipsoid by a factor /n gives
an ellipsoid that contains C.

Minimum volume ellipsoid covering union of ellipsoids. Formulate the following problem
as a convex optimization problem. Find the minimum volume ellipsoid & = {z | (z —
x0)T A7 (z — o) < 1} that contains K given ellipsoids

Ei={z|a" A +2b]z+c¢; <0}, i=1,...,K.

Hint. See appendix B.
Mazimum volume rectangle inside a polyhedron. Formulate the following problem as a
convex optimization problem. Find the rectangle

R={zeR" |l <z =<u}

of maximum volume, enclosed in a polyhedron P = {x | Az < b}. The variables are
l,u € R". Your formulation should not involve an exponential number of constraints.

Centering
Affine invariance of analytic center. Show that the analytic center of a set of inequalities is
affine invariant. Show that it is invariant with respect to positive scaling of the inequalities.

Analytic center and redundant inequalities. Two sets of linear inequalities that describe
the same polyhedron can have different analytic centers. Show that by adding redundant
inequalities, we can make any interior point xo of a polyhedron

P={zeR"| Az < b}
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8.19

8.20

8.21

8.22

the analytic center. More specifically, suppose A € R™*™ and Azo < b. Show that there
exist ¢ € R", v € R, and a positive integer ¢, such that P is the solution set of the m + ¢
inequalities

Az <b, o <A, o<y, ..., Fa<y (8.36)
(where the inequality ¢”« < v is added ¢ times), and zo is the analytic center of (8.36).

Let xac be the analytic center of a set of linear inequalities
a?ﬂcgbi, i=1,...,m,

and define H as the Hessian of the logarithmic barrier function at xac:

m 1
_ T
H = Z (b = aTzn0)? aia; .
i=1 i ac

Show that the kth inequality is redundant (i.e., it can be deleted without changing the
feasible set) if

b, — ap Tac > m(ap H 'ay)"/>.

Ellipsoidal approximation from analytic center of linear matriz inequality. Let C be the
solution set of the LMI
1AL +x2As + - + 2, A =X B,

where A;, B € S™, and let z,c be its analytic center. Show that

ginncr g C g 50utcr7

where
Emer = {x | (2 — @ac) H(z — Tac) < 1},
Eoster = {z|(xz— xaC)TH(m — Zac) <m(m —1)},
and H is the Hessian of the logarithmic barrier function
—logdet(B — x141 — x2A2 — -+ — x, Ap)

evaluated at xac.

[BYT99] Mazimum likelihood interpretation of analytic center. We use the linear mea-
surement model of page 352,
y=Ax + v,

where A € R™*™. We assume the noise components v; are IID with support [—1,1]. The
set of parameters x consistent with the measurements y € R™ is the polyhedron defined
by the linear inequalities

—-1+yxAz<1+y. (8.37)

Suppose the probability density function of v; has the form

(v) = ar(1—2v?)" —-1<v<1
PI=9 9 otherwise,

where r > 1 and a,- > 0. Show that the maximum likelihood estimate of x is the analytic
center of (8.37).

Center of gravity. The center of gravity of a set C C R"™ with nonempty interior is defined

as
fcudu

Teg = m
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The center of gravity is affine invariant, and (clearly) a function of the set C, and not
its particular description. Unlike the centers described in the chapter, however, it is very
difficult to compute the center of gravity, except in simple cases (e.g., ellipsoids, balls,
simplexes).

Show that the center of gravity xce is the minimizer of the convex function

Je) = / o — 2|3 du.
C

Classification

Robust linear discrimination. Consider the robust linear discrimination problem given
in (8.23).

(a) Show that the optimal value t* is positive if and only if the two sets of points can
be linearly separated. When the two sets of points can be linearly separated, show
that the inequality ||all2 <1 is tight, i.e., we have ||a*|]2 = 1, for the optimal a™.

(b) Using the change of variables @ = a/t, b = b/t, prove that the problem (8.23) is
equivalent to the QP

minimize  ||al|2
subject to aTax; —b>1, i=1,....,N
aTys—b< -1, i=1,...,M.

Linear discrimination mazimally robust to weight errors. Suppose we are given two sets of
points {z1,...,zn} and and {y1,...,ym} in R™ that can be linearly separated. In §8.6.1
we showed how to find the affine function that discriminates the sets, and gives the largest
gap in function values. We can also consider robustness with respect to changes in the
vector a, which is sometimes called the weight vector. For a given a and b for which
f(x) = a”x — b separates the two sets, we define the weight error margin as the norm of
the smallest u € R™ such that the affine function (a + )2 — b no longer separates the
two sets of points. In other words, the weight error margin is the maximum p such that

(a—&—u)T:riZb, i=1,...,N, (a—&—u)Tijb7 i=1,..., M,

holds for all u with [Jul]2 < p.

Show how to find a and b that maximize the weight error margin, subject to the normal-
ization constraint ||allz < 1.

Most spherical separating ellipsoid. We are given two sets of vectors z1,...,xny € R", and
Y1,...,ym € R"™, and wish to find the ellipsoid with minimum eccentricity (i.e., minimum
condition number of the defining matrix) that contains the points z1, ..., zn, but not the
points yi,...,ym. Formulate this as a convex optimization problem.

Placement and floor planning

Quadratic placement. We consider a placement problem in R?, defined by an undirected

graph A with N nodes, and with quadratic costs:
e . 2
minimize Z(i,]’)eA lx: — =55

The variables are the positions z; € R?,i=1,..., M. The positions x;, i = M +1,...,N
are given. We define two vectors u,v € R by

u = (z11,%21,...,TM1), v = (Z12,T22,...,TM2),

containing the first and second components, respectively, of the free nodes.



452

8 Geometric problems

8.27

8.28

Show that u and v can be found by solving two sets of linear equations,
C’LL = dl, C’U = dz,

where C' € S, Give a simple expression for the coefficients of C' in terms of the graph A.

Problems with minimum distance constraints. We consider a problem with variables
z1,...,zn € RF. The objective, fo(z1,...,zN), is convex, and the constraints

fi(:vl,...,a:N)SO, izl,...,m,

are convex (i.e., the functions fi : R — R are convex). In addition, we have the
mintmum distance constraints

||x1_IJ||22Dmln7 Z#]v Z?.]:layN

In general, this is a hard nonconvex problem.

Following the approach taken in floorplanning, we can form a convex restriction of the
problem, i.e., a problem which is convex, but has a smaller feasible set. (Solving the
restricted problem is therefore easy, and any solution is guaranteed to be feasible for the
nonconvex problem.) Let a;; € R®, for i < j, 4,5 =1,..., N, satisfy |lai||2 = 1.

Show that the restricted problem

minimize  fo(z1,...,ZN)
subject to  fi(z1,...,2n) <0, i=1,...,m
az;(fci_xj)ZDmiru i<j> i>j:17"'7N7

is convex, and that every feasible point satisfies the minimum distance constraint.
Remark. There are many good heuristics for choosing the directions a;;. One simple

one starts with an approximate solution #1,...,&n (that need not satisfy the minimum
distance constraints). We then set a;; = (Z; — &;)/||%: — Z5]|2-
Miscellaneous problems
Let P1 and P2 be two polyhedra described as
Pr={z| Az < b}, Pro={z|-1=Czx =<1},

where A € R™*", C € RP*™, and b € R™. The polyhedron P2 is symmetric about the
origin. For t > 0 and z. € R", we use the notation tP2 + z. to denote the polyhedron

tPy + z. = {tz + z. | © € P2},

which is obtained by first scaling P> by a factor ¢t about the origin, and then translating
its center to x..

Show how to solve the following two problems, via an LP, or a set of LPs.
(a) Find the largest polyhedron ¢P2 + z. enclosed in P1, i.e.,

maximize ¢
subject to tP2 4+ x. C P1
t>0.

(b) Find the smallest polyhedron ¢P; + z. containing P1, i.e.,

minimize ¢
subject to P1 C tP2 + xc
t>0.
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In both problems the variables are t € R and z. € R".

Outer polyhedral approzimations. Let P = {x € R"™ | Az < b} be a polyhedron, and
C C R" a given set (not necessarily convex). Use the support function S¢ to formulate
the following problem as an LP:

minimize ¢
subject to C CtP +x
t>0.

Here tP+x = {tu+x | u € P}, the polyhedron P scaled by a factor of ¢ about the origin,
and translated by x. The variables are t € R and x € R".

Interpolation with piecewise-arc curve. A sequence of points a1, ..., a, € R? is given. We
construct a curve that passes through these points, in order, and is an arc (i.e., part of a
circle) or line segment (which we think of as an arc of infinite radius) between consecutive
points. Many arcs connect a; and a;+1; we parameterize these arcs by giving the angle
0; € (—m, ) between its tangent at a; and the line segment [a;, a;+1]. Thus, 6; = 0 means
the arc between a; and a;41 is in fact the line segment [a;, ai+1]; §; = /2 means the arc
between a; and a;4+1 is a half-circle (above the linear segment [a1, az]); 6; = —7/2 means
the arc between a; and a;41 is a half-circle (below the linear segment [a1, az]). This is
illustrated below.

91' 237l'/4

a; Qit1

Our curve is completely specified by the angles 61,...,0,, which can be chosen in the
interval (—m, 7). The choice of 6; affects several properties of the curve, for example, its
total arc length L, or the joint angle discontinuities, which can be described as follows.
At each point a;, 1 = 2,...,n— 1, two arcs meet, one coming from the previous point and
one going to the next point. If the tangents to these arcs exactly oppose each other, so the
curve is differentiable at a;, we say there is no joint angle discontinuity at a;. In general,
we define the joint angle discontinuity at a; as |6;—1+6;+1;|, where 1); is the angle between
the line segment [a;, a;+1] and the line segment [a;—1, as], i.e., ¥; = Z(a; — ait1, Gim1 —a5).
This is shown below. Note that the angles 1; are known (since the a; are known).

Ai41

We define the total joint angle discontinuity as

n
D= Z |0i—1 + 0; + ).
i=2
Formulate the problem of minimizing total arc length length L, and total joint angle

discontinuity D, as a bi-criterion convex optimization problem. Explain how you would
find the extreme points on the optimal trade-off curve.
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Chapter 9

Unconstrained minimization

Unconstrained minimization problems

In this chapter we discuss methods for solving the unconstrained optimization
problem
minimize f(x) (9.1

where f: R"™ — R is convex and twice continuously differentiable (which implies
that dom f is open). We will assume that the problem is solvable, i.e., there exists
an optimal point *. (More precisely, the assumptions later in the chapter will
imply that z* exists and is unique.) We denote the optimal value, inf, f(z) =
f(z*), as p*.

Since f is differentiable and convex, a necessary and sufficient condition for a
point z* to be optimal is

V(z*) =0 (9.2)

(see §4.2.3). Thus, solving the unconstrained minimization problem (9.1) is the
same as finding a solution of (9.2), which is a set of n equations in the n variables
Z1,...,Z,. In a few special cases, we can find a solution to the problem (9.1) by
analytically solving the optimality equation (9.2), but usually the problem must
be solved by an iterative algorithm. By this we mean an algorithm that computes
a sequence of points 2, (... € dom f with f(z(*)) — p* as k — oco. Such
a sequence of points is called a minimizing sequence for the problem (9.1). The
algorithm is terminated when f(x(k)) — p* < €, where € > 0 is some specified
tolerance.

Initial point and sublevel set

The methods described in this chapter require a suitable starting point z(°). The
starting point must lie in dom f, and in addition the sublevel set

S={zedomf| f(z) < f(z'”)} (9.3)

must be closed. This condition is satisfied for all (%) € dom f if the function f is
closed, i.e., all its sublevel sets are closed (see §A.3.3). Continuous functions with
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dom f = R" are closed, so if dom f = R", the initial sublevel set condition is
satisfied by any z(®). Another important class of closed functions are continuous
functions with open domains, for which f(z) tends to infinity as x approaches
bddom f.

Examples

Quadratic minimization and least-squares

The general convex quadratic minimization problem has the form
minimize (1/2)z? Pz +qTx +r, (9.4)

where P € S”, g € R", and r € R. This problem can be solved via the optimality
conditions, Px* + ¢ = 0, which is a set of linear equations. When P > 0, there is
a unique solution, z* = —P~1'¢. In the more general case when P is not positive
definite, any solution of Px* = —gq is optimal for (9.4); if Px* = —q does not
have a solution, then the problem (9.4) is unbounded below (see exercise 9.1). Our
ability to analytically solve the quadratic minimization problem (9.4) is the basis
for Newton’s method, a powerful method for unconstrained minimization described
in §9.5.

One special case of the quadratic minimization problem that arises very fre-
quently is the least-squares problem

minimize |[|Ax — b||3 = 2T (AT A)z — 2(ATh) Tz + bTb.
The optimality conditions
AT Az = ATh

are called the normal equations of the least-squares problem.

Unconstrained geometric programming

As a second example, we consider an unconstrained geometric program in convex
form,
minimize f(z) =log (X", exp(al  +b;)) .

The optimality condition is
1

Vf(x*) = Toe* 4+ b;)a; =0,
f(a*) Z;ﬁ:lexpmw+bj)ZZ:;'-»qouwc +bi)a

which in general has no analytical solution, so here we must resort to an iterative
algorithm. For this problem, dom f = R", so any point can be chosen as the
initial point z(%).

Analytic center of linear inequalities

We consider the optimization problem

minimize f(z) = —Y1", log(b; — al z), (9.5)



9.1.2

9.1 Unconstrained minimization problems

459

where the domain of f is the open set
dom f={z|a]z<b;, i=1,...,m}.

The objective function f in this problem is called the logarithmic barrier for the
inequalities a2z < b;. The solution of (9.5), if it exists, is called the analytic

i
center of the inequalities. The initial point #(°) must satisfy the strict inequalities
aiTx(O) < b;,2=1,...,m. Since f is closed, the sublevel set S for any such point
is closed.

Analytic center of a linear matrix inequality
A closely related problem is
minimize f(z) = logdet F(z)~! (9.6)
where ' : R" — S? is affine, i.ce.,
Fz)=Fy+x1F1+ -+ x,Fy,
with F; € SP. Here the domain of f is
dom f = {z | F(z) = 0}.

The objective function f is called the logarithmic barrier for the linear matrix
inequality F(z) = 0, and the solution (if it exists) is called the analytic center of
the linear matrix inequality. The initial point z(°) must satisfy the strict linear
matrix inequality F' (w(o)) > 0. As in the previous example, the sublevel set of any
such point will be closed, since f is closed.

Strong convexity and implications

In much of this chapter (with the exception of §9.6) we assume that the objective
function is strongly convex on S, which means that there exists an m > 0 such that

V2 f(x) = ml (9.7)

for all z € S. Strong convexity has several interesting consequences. For x,y € S
we have

Fly) = () + VI (g~ 2) + 5~ 2) )y~ 2)

for some z on the line segment [z, y]. By the strong convexity assumption (9.7), the
last term on the righthand side is at least (m/2)||y — x||3, so we have the inequality

F) > f@)+ V@) (y =) + 5 |y — o3 (9.8)

for all z and y in S. When m = 0, we recover the basic inequality characterizing
convexity; for m > 0 we obtain a better lower bound on f(y) than follows from
convexity alone.
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We will first show that the inequality (9.8) can be used to bound f(x) — p*,
which is the suboptimality of the point x, in terms of ||V f(x)||2. The righthand
side of (9.8) is a convex quadratic function of y (for fixed x). Setting the gradient
with respect to y equal to zero, we find that § =  — (1/m)V f(z) minimizes the
righthand side. Therefore we have

V

f@) = f@)+ V@) —2)+ 2y -l
F@) + V@) @G- o) + 55— ol

£(@) = 5 IV @B

Y

Since this holds for any y € S, we have

P> (@) - 5 V@B 99)

This inequality shows that if the gradient is small at a point, then the point is
nearly optimal. The inequality (9.9) can also be interpreted as a condition for
suboptimality which generalizes the optimality condition (9.2):

IVf(@)l2 < (2me)'/? = f(a) —p* < e (9.10)

We can also derive a bound on |z — z*||2, the distance between x and any
optimal point z*, in terms of |V f(z)]|2:

N 2
|z —a*[l2 < = [IVf(z)]2. (9.11)
m
To see this, we apply (9.8) with y = 2* to obtain
N m
P = 1) = @)+ VI )+ e o

m
> f@) = IVi@)lallz* = zl> + 5 ll2* =[5,
where we use the Cauchy-Schwarz inequality in the second inequality. Since p* <
f(z), we must have

m *
—IIVFi@)ll2 ll2* — a2 + 5 lla™ ~ all3 <0,

from which (9.11) follows. One consequence of (9.11) is that the optimal point x*
is unique.

Upper bound on V2 f(x)

The inequality (9.8) implies that the sublevel sets contained in S are bounded, so in
particular, S is bounded. Therefore the maximum eigenvalue of V2 f(z), which is a
continuous function of x on S, is bounded above on S, i.e., there exists a constant
M such that

Vif(z) = MI (9.12)
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for all x € S. This upper bound on the Hessian implies for any x, y € .5,

Fo) < £(@) + V@) - 2) + Gy ol (913)

which is analogous to (9.8). Minimizing each side over y yields

1
* < _ 2 )
P < @) - g IVI@IE, (9.14)
the counterpart of (9.9).

Condition number of sublevel sets

From the strong convexity inequality (9.7) and the inequality (9.12), we have
ml = V?f(z) = MI (9.15)

for all z € S. The ratio Kk = M/m is thus an upper bound on the condition
number of the matrix V2 f(z), i.e., the ratio of its largest eigenvalue to its smallest
eigenvalue. We can also give a geometric interpretation of (9.15) in terms of the
sublevel sets of f.

We define the width of a convex set C' C R", in the direction ¢, where ||g||2 = 1,
as

W(C,q) = sup ¢’z — inf ¢7 2.
zeC zeC

The minimum width and mazimum width of C' are given by

Win = inf W(C,q), Wiax = sup W(C,q).

llgll2=1 llgll2=1

The condition number of the convex set C' is defined as

2

cond(C) = %7
min

i.e., the square of the ratio of its maximum width to its minimum width. The
condition number of C' gives a measure of its anisotropy or eccentricity. If the
condition number of a set C is small (say, near one) it means that the set has
approximately the same width in all directions, i.e., it is nearly spherical. If the
condition number is large, it means that the set is far wider in some directions than
in others.

Example 9.1 Condition number of an ellipsoid. Let £ be the ellipsoid
E={x]| (z - :Eo)TA_l(m —z0) < 1},
where A € S%,. The width of £ in the direction ¢ is

supg”z—inf ¢z = (|AY%qll2 + ¢ w0) — (—[|Aq]l2 + ¢" 0)
z€E z€€

2/|A"2q]l2.
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It follows that its minimum and maximum width are
Wmin = ZAmin(A)l/Q, Wmax = 2>\max(A)1/2,

and its condition number is

Amax(A)
cond(&) = ——= = k(4),
nd(£) = A = k(4)
where k(A) denotes the condition number of the matrix A, i.e., the ratio of its
maximum singular value to its minimum singular value. Thus the condition number
of the ellipsoid £ is the same as the condition number of the matrix A that defines
it.

Now suppose f satisfies mI < V2f(x) < MI for all z € S. We will derive
a bound on the condition number of the a-sublevel C, = {z | f(z) < a}, where
p* < a < f(2©). Applying (9.13) and (9.8) with 2 = z*, we have

P+ (M/2)|ly —2*[53 > f(y) = p* + (m/2)|ly — a*|3.
This implies that Biyner € Co € Bouter Where
Bimer = {y|lly—2*|2 < (2(a—p*)/M)"/?},
Bowter = {y|lly—a*]2 < 2(c—p*)/m)"/?}.

In other words, the a-sublevel set contains Bjnner, and is contained in Bgyger, which
are balls with radii

(2(a—p)/M)V2, (2(a—p*)/m)"/2,

respectively. The ratio of the radii squared gives an upper bound on the condition
number of Cy:

M
cond(C,) < —.
m

We can also give a geometric interpretation of the condition number x(V?2 f(2*))
of the Hessian at the optimum. From the Taylor series expansion of f around z*,

Flo) = p* + 5y =) V2 )y - a7),
we see that, for a close to p*,
Com{y | (y =)V f(2")(y —a*) < 2(a = p")},
i.e., the sublevel set is well approximated by an ellipsoid with center z*. Therefore

lim cond(C,) = (V2 f(z*)).
a—p*
We will see that the condition number of the sublevel sets of f (which is bounded
by M/m) has a strong effect on the efficiency of some common methods for uncon-
strained minimization.
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The strong convexity constants

It must be kept in mind that the constants m and M are known only in rare cases,
so the inequality (9.10) cannot be used as a practical stopping criterion. It can be
considered a conceptual stopping criterion; it shows that if the gradient of f at x
is small enough, then the difference between f(z) and p* is small. If we terminate
an algorithm when ||V f(z®))|s < n, where 7 is chosen small enough to be (very
likely) smaller than (me)'/2, then we have f(z(*)) — p* < ¢ (very likely).

In the following sections we give convergence proofs for algorithms, which in-
clude bounds on the number of iterations required before f(x(*)) — p* < ¢, where
€ is some positive tolerance. Many of these bounds involve the (usually unknown)
constants m and M, so the same comments apply. These results are at least con-
ceptually useful; they establish that the algorithm converges, even if the bound on
the number of iterations required to reach a given accuracy depends on constants
that are unknown.

We will encounter one important exception to this situation. In §9.6 we will
study a special class of convex functions, called self-concordant, for which we can
provide a complete convergence analysis (for Newton’s method) that does not de-
pend on any unknown constants.

Descent methods

The algorithms described in this chapter produce a minimizing sequence z(*), k =
1,..., where
2D — g (B) 4 (k) A ()

and t™*) > 0 (except when z(*) is optimal). Here the concatenated symbols A and
x that form Az are to be read as a single entity, a vector in R" called the step or
search direction (even though it need not have unit norm), and k = 0, 1, ... denotes
the iteration number. The scalar t(*) > 0 is called the step size or step length at
iteration k (even though it is not equal to ||z**1) — 2()|| unless |Az®)| = 1).
The terms ‘search step’ and ‘scale factor’ are more accurate, but ‘search direction’
and ‘step length’ are the ones widely used. When we focus on one iteration of
an algorithm, we sometimes drop the superscripts and use the lighter notation
zt =2+ tAx, or z := z + tAz, in place of z* D = (k) 4 (R Az k),

All the methods we study are descent methods, which means that

FE®D) < fa),

except when z(®) is optimal. This implies that for all k¥ we have 2(*) € S| the initial
sublevel set, and in particular we have z(*) € dom f. From convexity we know
that Vf(z")T(y — ™) > 0 implies f(y) > f(z®), so the search direction in a
descent method must satisfy

V)T Az <o,

i.e., it must make an acute angle with the negative gradient. We call such a
direction a descent direction (for f, at x(¥)).
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The outline of a general descent method is as follows. It alternates between two
steps: determining a descent direction Az, and the selection of a step size t.

Algorithm 9.1 General descent method.

given a starting point z € dom f.

repeat
1. Determine a descent direction Azx.
2. Line search. Choose a step size t > 0.
3. Update. x := x + tAwx.

until stopping criterion is satisfied.

The second step is called the line search since selection of the step size ¢t deter-
mines where along the line {z + tAx | t € R4} the next iterate will be. (A more
accurate term might be ray search.)

A practical descent method has the same general structure, but might be or-
ganized differently. For example, the stopping criterion is often checked while, or
immediately after, the descent direction Ax is computed. The stopping criterion
is often of the form ||V f(x)|l2 < 7, where n is small and positive, as suggested by
the suboptimality condition (9.9).

Exact line search

One line search method sometimes used in practice is ezxact line search, in which ¢
is chosen to minimize f along the ray {z 4+ tAz |t > 0}:

t = argmings, f(z + sAx). (9.16)

An exact line search is used when the cost of the minimization problem with one
variable, required in (9.16), is low compared to the cost of computing the search
direction itself. In some special cases the minimizer along the ray can be found an-
alytically, and in others it can be computed efficiently. (This is discussed in §9.7.1.)

Backtracking line search

Most line searches used in practice are inexact: the step length is chosen to ap-
proximately minimize f along the ray {z 4+ tAz | ¢ > 0}, or even to just reduce
f ‘enough’. Many inexact line search methods have been proposed. One inexact
line search method that is very simple and quite effective is called backtracking line
search. It depends on two constants «, 8 with 0 < a < 0.5, 0 < 8 < 1.

Algorithm 9.2 Backtracking line search.

given a descent direction Az for f at z € dom f, a € (0,0.5), 8 € (0,1).
t:=1.
while f(z +tAz) > f(z) + atVf(z) Az, t:=pjt.
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flz + tAx)

Figure 9.1 Backtracking line search. The curve shows f, restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f, and the upper dashed line has a slope a factor of o smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 <
t < to.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor 8 until the stopping condition f(x + tAz) < f(z) +
atVf(z)T Az holds. Since Az is a descent direction, we have Vf(z)T Az < 0, so
for small enough t we have

flx+tAz) = f(z) +tV (@) Az < f(2) + atVf(z)T Az,

which shows that the backtracking line search eventually terminates. The constant
« can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring a to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(z + tAz) < f(x) +
atV f(z)T Az holds for ¢ > 0 in an interval (0,¢]. It follows that the backtracking
line search stops with a step length ¢ that satisfies

t=1, or te (5t0,t0}.

The first case occurs when the step length ¢ = 1 satisfies the backtracking condition,
i.e., 1 < tg. In particular, we can say that the step length obtained by backtracking
line search satisfies

t > min{l, Bto}.

When dom f is not all of R", the condition f(z+tAx) < f(z)+atVf(z)T Az
in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that  + tAxz € dom f.
In a practical implementation, we first multiply ¢ by £ until x + tAz € dom f;
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9.3

9.3.1

then we start to check whether the inequality f(z + tAz) < f(z) + atVf(x)T Az
holds.

The parameter « is typically chosen between 0.01 and 0.3, meaning that we
accept a decrease in f between 1% and 30% of the prediction based on the linear
extrapolation. The parameter 8 is often chosen to be between 0.1 (which corre-
sponds to a very crude search) and 0.8 (which corresponds to a less crude search).

Gradient descent method

A natural choice for the search direction is the negative gradient Az = —V f(z).
The resulting algorithm is called the gradient algorithm or gradient descent method.

Algorithm 9.3 Gradient descent method.

given a starting point € dom f.

repeat
1. Az := =V f(z).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAwx.

until stopping criterion is satisfied.

The stopping criterion is usually of the form ||V f(z)||2 < 1, where 7 is small and
positive. In most implementations, this condition is checked after step 1, rather
than after the update.

Convergence analysis

In this section we present a simple convergence analysis for the gradient method,
using the lighter notation zt = z 4 tAz for 2+ = 20 4t AZK®)  where Az =
—Vf(x). We assume f is strongly convex on S, so there are positive constants m
and M such that mI < V2f(z) < MI for all z € S. Define the function f: R—R
by f(t) = f(x — tVf(x)), i.e., f as a function of the step length ¢ in the negative
gradient direction. In the following discussion we will only consider ¢ for which
x —tVf(x) € S. From the inequality (9.13), with y = 2 — tV f(z), we obtain a
quadratic upper bound on f :

_ 2
Ft) < 1)tV @3+ 197 @) 3. (917)

Analysis for exact line search

We now assume that an exact line search is used, and minimize over ¢ both sides
of the inequality (9.17). On the lefthand side we get f(fexact), Where fexacq is the
step length that minimizes f. The righthand side is a simple quadratic, which
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is minimized by ¢ = 1/M, and has minimum value f(x) — (1/(2M))||Vf(z)|3.
Therefore we have

F@*) = Fltesacd) < 1) = S IV@)IB.

Subtracting p* from both sides, we get

1
+\ o x < R 2
F@) =0 < @) - — V@)
We combine this with ||V f(z)]|3 > 2m(f(z) — p*) (which follows from (9.9)) to
conclude

f@™) =p* < (1 —m/M)(f(z) - p*).
Applying this inequality recursively, we find that

F@®y —p* < F(f(@) - pY) (9.18)

where ¢ = 1 —m/M < 1, which shows that f(z(®)) converges to p* as k — oco. In
particular, we must have f(z(®)) — p* < ¢ after at most

log((f (=) —p*)/e)
log(1/c)

iterations of the gradient method with exact line search.
This bound on the number of iterations required, even though crude, can give
some insight into the gradient method. The numerator,

log((f (') —p*)/e)

can be interpreted as the log of the ratio of the initial suboptimality (i.e., gap
between f(z(®)) and p*), to the final suboptimality (i.e., less than €). This term
suggests that the number of iterations depends on how good the initial point is,
and what the final required accuracy is.

The denominator appearing in the bound (9.19), log(1/¢), is a function of M/m,
which we have seen is a bound on the condition number of V2f(z) over S, or the
condition number of the sublevel sets {z | f(z) < a}. For large condition number
bound M /m, we have

(9.19)

log(1/c) = —log(l — m/M) =~ m/M,

so our bound on the number of iterations required increases approximately linearly
with increasing M/m.

We will see that the gradient method does in fact require a large number of
iterations when the Hessian of f, near 2*, has a large condition number. Conversely,
when the sublevel sets of f are relatively isotropic, so that the condition number
bound M/m can be chosen to be relatively small, the bound (9.18) shows that
convergence is rapid, since c¢ is small, or at least not too close to one.

The bound (9.18) shows that the error f(z(*)) — p* converges to zero at least
as fast as a geometric series. In the context of iterative numerical methods, this
is called linear convergence, since the error lies below a line on a log-linear plot of
error versus iteration number.
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Analysis for backtracking line search

Now we consider the case where a backtracking line search is used in the gradient
descent method. We will show that the backtracking exit condition,

F(t) < f(@) — at|V f()]I3,
is satisfied whenever 0 <t < 1/M. First note that

Mt?
0§t§1/M — —t+T§—t/2

(which follows from convexity of —t-+M1?/2). Using this result and the bound (9.17),
we have, for 0 <t < 1/M,

2
) < 5@ -9 i@IE + SV E);

f@) = t/2)IVF(@)]3
f(@) = at|V f(@)]]3,

since o < 1/2. Therefore the backtracking line search terminates either with ¢t =1
or with a value t > /M. This provides a lower bound on the decrease in the
objective function. In the first case we have

f@®) < f2) = alVf(2)]3,
and in the second case we have
f@®) < f(@) = (Ba/M)|IV f(@)][3-
Putting these together, we always have
f(@®) < f(z) — min{a, Bo/M}|Vf(2)|3-

Now we can proceed exactly as in the case of exact line search. We subtract p*
from both sides to get

fla®) =" < f(z) = p* — min{a, Ba/ M}V f(2)]3,
and combine this with ||V f(z)||3 > 2m(f(z) — p*) to obtain

ININIA

f(z) = p* < (1 —min{2ma, 2Bam/M})(f(z) — p*).
From this we conclude

fa®) —p* < F(f() = p*)
where
¢ =1—min{2ma, 2am/M} < 1.

In particular, f (x(k)) converges to p* at least as fast as a geometric series with an
exponent that depends (at least in part) on the condition number bound M/m. In
the terminology of iterative methods, the convergence is at least linear.
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Figure 9.2 Some contour lines of the function f(x) = (1/2)(z? + 1023). The
condition number of the sublevel sets, which are ellipsoids, is exactly 10.
The figure shows the iterates of the gradient method with exact line search,
started at z(® = (10, 1).

Examples

A quadratic problem in R?
Our first example is very simple. We consider the quadratic objective function on
R2

f(a) = (a? +9a3),

where 7 > 0. Clearly, the optimal point is 2* = 0, and the optimal value is 0. The
Hessian of f is constant, and has eigenvalues 1 and -y, so the condition numbers of
the sublevel sets of f are all exactly

max{1,7}

min{1,7} = max{y,1/7}.

The tightest choices for the strong convexity constants m and M are
m = min{1,~}, M = max{1,~}.

We apply the gradient descent method with exact line search, starting at the
point () = (7,1). In this case we can derive the following closed-form expressions
for the iterates 2(*) and their function values (exercise 9.6):

k k
MONI e NONN Gl
! vy+1) 7 2 y+1)

Fa®) = v +1) (7 - 1>2k - <7_1>2k F(z ),

and

2 v+1 v+1

This is illustrated in figure 9.2, for v = 10.
For this simple example, convergence is exactly linear, i.e., the error is exactly
a geometric series, reduced by the factor |(y — 1)/(y + 1)|? at each iteration. For
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v = 1, the exact solution is found in one iteration; for v not far from one (say,
between 1/3 and 3) convergence is rapid. The convergence is very slow for v > 1
or v < 1.

We can compare the convergence with the bound derived above in §9.3.1. Using
the least conservative values m = min{1,~} and M = max{1,~}, the bound (9.18)
guarantees that the error in each iteration is reduced at least by the factor ¢ =
(1 —m/M). We have seen that the error is in fact reduced exactly by the factor

1—m/M 2
(1 +m/M )
in each iteration. For small m/M, which corresponds to large condition number,
the upper bound (9.19) implies that the number of iterations required to obtain
a given level of accuracy grows at most like M/m. For this example, the exact
number of iterations required grows approximately like (M/m)/4, i.e., one quarter
of the value of the bound. This shows that for this simple example, the bound on
the number of iterations derived in our simple analysis is only about a factor of four
conservative (using the least conservative values for m and M). In particular, the

convergence rate (as well as its upper bound) is very dependent on the condition
number of the sublevel sets.

A nonquadratic problem in R?

We now consider a nonquadratic example in R?, with
f(x1,$2) — e$1+3a:270.1 + eajlf?)wzfo.l 4 e—wl—o.l' (920)

We apply the gradient method with a backtracking line search, with a = 0.1,
B = 0.7. Figure 9.3 shows some level curves of f, and the iterates z(*) generated
by the gradient method (shown as small circles). The lines connecting successive
iterates show the scaled steps,

2D ) = 0y f( 00,

Figure 9.4 shows the error f(z(*)) —p* versus iteration k. The plot reveals that
the error converges to zero approximately as a geometric series, i.e., the convergence
is approximately linear. In this example, the error is reduced from about 10 to
about 1077 in 20 iterations, so the error is reduced by a factor of approximately
1078/29 ~ 0.4 each iteration. This reasonably rapid convergence is predicted by
our convergence analysis, since the sublevel sets of f are not too badly conditioned,
which in turn means that M/m can be chosen as not too large.

To compare backtracking line search with an exact line search, we use the
gradient method with an exact line search, on the same problem, and with the
same starting point. The results are given in figures 9.5 and 9.4. Here too the
convergence is approximately linear, about twice as fast as the gradient method
with backtracking line search. With exact line search, the error is reduced by
about 10~! in 15 iterations, i.e., a reduction by a factor of about 10~11/15 x~ 0.2
per iteration.
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Figure 9.3 Iterates of the gradient method with backtracking line search,
for the problem in R? with objective f given in (9.20). The dashed curves
are level curves of f, and the small circles are the iterates of the gradient
method. The solid lines, which connect successive iterates, show the scaled
steps t™*) Ag®).
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Figure 9.4 Error f(z®)) — p* versus iteration k of the gradient method with
backtracking and exact line search, for the problem in R? with objective f
given in (9.20). The plot shows nearly linear convergence, with the error
reduced approximately by the factor 0.4 in each iteration of the gradient
method with backtracking line search, and by the factor 0.2 in each iteration
of the gradient method with exact line search.
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Figure 9.5 Iterates of the gradient method with exact line search for the
problem in R? with objective f given in (9.20).

A problem in R'®

We next consider a larger example, of the form

flx)=c"o— i log(b; — al z), (9.21)
i=1

with m = 500 terms and n = 100 variables.

The progress of the gradient method with backtracking line search, with pa-
rameters a = 0.1, § = 0.5, is shown in figure 9.6. In this example we see an initial
approximately linear and fairly rapid convergence for about 20 iterations, followed
by a slower linear convergence. Overall, the error is reduced by a factor of around
10% in around 175 iterations, which gives an average error reduction by a factor of
around 1076/17% ~ 0.92 per iteration. The initial convergence rate, for the first 20
iterations, is around a factor of 0.8 per iteration; the slower final convergence rate,
after the first 20 iterations, is around a factor of 0.94 per iteration.

Figure 9.6 shows the convergence of the gradient method with exact line search.
The convergence is again approximately linear, with an overall error reduction by
approximately a factor 1076/140 ~ 0.91 per iteration. This is only a bit faster than
the gradient method with backtracking line search.

Finally, we examine the influence of the backtracking line search parameters «
and § on the convergence rate, by determining the number of iterations required
to obtain f(z(®)) — p* < 1075, In the first experiment, we fix 3 = 0.5, and vary
a from 0.05 to 0.5. The number of iterations required varies from about 80, for
larger values of «, in the range 0.2-0.5, to about 170 for smaller values of «. This,
and other experiments, suggest that the gradient method works better with fairly
large «, in the range 0.2-0.5.

Similarly, we can study the effect of the choice of § by fixing @ = 0.1 and
varying S from 0.05 to 0.95. Again the variation in the total number of iterations
is not large, ranging from around 80 (when S =~ 0.5) to around 200 (for S small,
or near 1). This experiment, and others, suggest that S ~ 0.5 is a good choice.
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Figure 9.6 Error f(z(*)) —p* versus iteration k for the gradient method with
backtracking and exact line search, for a problem in R,

These experiments suggest that the effect of the backtracking parameters on the
convergence is not large, no more than a factor of two or so.

Gradient method and condition number

Our last experiment will illustrate the importance of the condition number of
V2f(z) (or the sublevel sets) on the rate of convergence of the gradient method.
We start with the function given by (9.21), but replace the variable z by « = Tz,
where

T = diag((1,7"/",7*/", ... ,y"=D/my),

i.e., we minimize

f(z)=c"Tz — Z log(b; — al Tz). (9.22)

i=1

This gives us a family of optimization problems, indexed by -y, which affects the
problem condition number.

Figure 9.7 shows the number of iterations required to achieve f (E(k))—ﬁ* <107°
as a function of v, using a backtracking line search with = 0.3 and 8 = 0.7. This
plot shows that for diagonal scaling as small as 10 : 1 (i.e., ¥ = 10), the number of
iterations grows to more than a thousand; for a diagonal scaling of 20 or more, the
gradient method slows to essentially useless.

The condition number of the Hessian V2f(z*) at the optimum is shown in
figure 9.8. For large and small 7, the condition number increases roughly as
max{y?,1/4%}, in a very similar way as the number of iterations depends on 7.
This shows again that the relation between conditioning and convergence speed is
a real phenomenon, and not just an artifact of our analysis.
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Figure 9.7 Number of iterations of the gradient method applied to prob-
lem (9.22). The vertical axis shows the number of iterations required to
obtain f(z®) —p* < 107°. The horizontal axis shows -, which is a param-
eter that controls the amount of diagonal scaling. We use a backtracking
line search with oo = 0.3, 8 = 0.7.
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Figure 9.8 Condition number of the Hessian of the function at its minimum,
as a function of . By comparing this plot with the one in figure 9.7, we see
that the condition number has a very strong influence on convergence rate.
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Conclusions

From the numerical examples shown, and others, we can make the conclusions
summarized below.

e The gradient method often exhibits approximately linear convergence, i.e.,
the error f (m(k)) — p* converges to zero approximately as a geometric series.

e The choice of backtracking parameters «, 8 has a noticeable but not dramatic
effect on the convergence. An exact line search sometimes improves the con-
vergence of the gradient method, but the effect is not large (and probably
not worth the trouble of implementing the exact line search).

e The convergence rate depends greatly on the condition number of the Hessian,
or the sublevel sets. Convergence can be very slow, even for problems that are
moderately well conditioned (say, with condition number in the 100s). When
the condition number is larger (say, 1000 or more) the gradient method is so
slow that it is useless in practice.

The main advantage of the gradient method is its simplicity. Its main disadvantage
is that its convergence rate depends so critically on the condition number of the
Hessian or sublevel sets.

Steepest descent method

The first-order Taylor approximation of f(x + v) around z is
f@+v) = flztv) = f(2) + V@) o

The second term on the righthand side, V f(z)Tv, is the directional derivative of
f at = in the direction v. It gives the approximate change in f for a small step v.
The step v is a descent direction if the directional derivative is negative.

We now address the question of how to choose v to make the directional deriva-
tive as negative as possible. Since the directional derivative V f(z)%v is linear in
v, it can be made as negative as we like by taking v large (provided v is a descent
direction, i.e., V.f(x)Tv < 0). To make the question sensible we have to limit the
size of v, or normalize by the length of v.

Let || - || be any norm on R™. We define a normalized steepest descent direction
(with respect to the norm || - ||) as
Ayeq = argmin{V f(z)Tv | |v| = 1}. (9.23)

(We say ‘a’ steepest descent direction because there can be multiple minimizers.)
A normalized steepest descent direction Axpgq is a step of unit norm that gives the
largest decrease in the linear approximation of f.

A normalized steepest descent direction can be interpreted geometrically as
follows. We can just as well define Azqq as

Axpsq = argmin{V f(z) v | |Jv]| < 1},
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i.e., as the direction in the unit ball of || - || that extends farthest in the direction
-V f(z).

It is also convenient to consider a steepest descent step Axgq that is unnormal-
ized, by scaling the normalized steepest descent direction in a particular way:

Axsd - HVf(x)”*Aandy (924)

where || - ||« denotes the dual norm. Note that for the steepest descent step, we
have
V(@) Azsg = V()] VF(2)" Arnsa = =V f ()2

(see exercise 9.7).
The steepest descent method uses the steepest descent direction as search direc-
tion.

Algorithm 9.4 Steepest descent method.

given a starting point € dom f.

repeat
1. Compute steepest descent direction Axgq.
2. Line search. Choose t via backtracking or exact line search.
3. Update. © := & + tAzsa.

until stopping criterion is satisfied.

When exact line search is used, scale factors in the descent direction have no effect,
so the normalized or unnormalized direction can be used.

Steepest descent for Euclidean and quadratic norms

Steepest descent for Euclidean norm
If we take the norm || -|| to be the Euclidean norm we find that the steepest descent
direction is simply the negative gradient, i.e., Axgg = —Vf(z). The steepest
descent method for the Euclidean norm coincides with the gradient descent method.
Steepest descent for quadratic norm
We consider the quadratic norm

Izl = (=7 P2)"/2 = || PY/22]s,

where P € S” | . The normalized steepest descent direction is given by

Azpea = — (V@) PV f (@) PV f ().

The dual norm is given by ||z||. = ||[P~'/2z]|2, so the steepest descent step with
respect to || - || p is given by
Az = —P7'Vf(2). (9.25)

The normalized steepest descent direction for a quadratic norm is illustrated in
figure 9.9.
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—Vi(z)

AZnsd

Figure 9.9 Normalized steepest descent direction for a quadratic norm. The
ellipsoid shown is the unit ball of the norm, translated to the point x. The
normalized steepest descent direction Axysqa at x extends as far as possible
in the direction —V f(z) while staying in the ellipsoid. The gradient and
normalized steepest descent directions are shown.

Interpretation via change of coordinates

We can give an interesting alternative interpretation of the steepest descent direc-
tion Axgq as the gradient search direction after a change of coordinates is applied
to the problem. Define @ = PY?u, so we have ||u||p = ||@||z. Using this change
of coordinates, we can solve the original problem of minimizing f by solving the
equivalent problem of minimizing the function f: R"™ — R, given by

f@) = f(P~%a) = f(u).

If we apply the gradient method to f, the search direction at a point Z (which
corresponds to the point © = P~1/2z for the original problem) is

AL = -V f(z) = —P Y2V f(P~?%z) = — P72V f(x).
This gradient search direction corresponds to the direction
Ag = P1/? (—P‘l/QVf(a:)) = —P IV f(x)

for the original variable x. In other words, the steepest descent method in the
quadratic norm | - [[p can be thought of as the gradient method applied to the
problem after the change of coordinates 7 = P'/%z.

Steepest descent for /;-norm

As another example, we consider the steepest descent method for the ¢;-norm. A
normalized steepest descent direction,

AZpeg = argmin{Vf(x)Tv | lv]lx <1},
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—-Vi(z)

A-Tnsd

Figure 9.10 Normalized steepest descent direction for the ¢1-norm. The
diamond is the unit ball of the ¢;-norm, translated to the point x. The
normalized steepest descent direction can always be chosen in the direction
of a standard basis vector; in this example we have Axnsq = e1.

is easily characterized. Let i be any index for which ||V f(2)|« = |(Vf(2)),|. Then
a normalized steepest descent direction Ax,gq for the ¢1-norm is given by

Axpsqg = —sign (8f(x)) €,

8£Ui
where e; is the ith standard basis vector. An unnormalized steepest descent step

is then
of(x)

8.%1'
Thus, the normalized steepest descent step in £1-norm can always be chosen to be a
standard basis vector (or a negative standard basis vector). It is the coordinate axis
direction along which the approximate decrease in f is greatest. This is illustrated
in figure 9.10.

The steepest descent algorithm in the ¢;-norm has a very natural interpretation:
At each iteration we select a component of V f(z) with maximum absolute value,
and then decrease or increase the corresponding component of x, according to the
sign of (V f(z)),. The algorithm is sometimes called a coordinate-descent algorithm,
since only one component of the variable x is updated at each iteration. This can
greatly simplify, or even trivialize, the line search.

Axsq = Apsd ||V (@)oo = — €;.

Example 9.2 Frobenius norm scaling. In §4.5.4 we encountered the unconstrained
geometric program
o e . n
minimize Zid:l M,-Zjd?/d?,
where M € R™*" is given, and the variable is d € R". Using the change of variables
x; = 2logd; we can express this geometric program in convex form as

minimize f(z) = log (Z:‘j:1 Mijezi—mj> .
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It is easy to minimize f one component at a time. Keeping all components except
the kth fixed, we can write f(z) = log(ax + Bre™ "% + vyre™ ), where

ap = Mlgk =+ Z ijewiimf’ ﬂk = ZMfkewi7 Ve = Zngeiwj.
4,j#k i#k J#k
The minimum of f(z), as a function of xz, is obtained for xp = log(B8x/vk)/2. So

for this problem an exact line search can be carried out using a simple analytical
formula.

The ¢;-steepest descent algorithm with exact line search consists of repeating the
following steps.

1. Compute the gradient

—Bie” " + yie™ .
Vi) = , t=1,...,n.
(Vi) = T

2. Select a largest (in absolute value) component of V f(z): |V f(z)|x = ||V f(2)|oo-

3. Minimize f over the scalar variable xy, by setting x = log(8k/vx)/2.

9.4.3 Convergence analysis

In this section we extend the convergence analysis for the gradient method with
backtracking line search to the steepest descent method for an arbitrary norm. We
will use the fact that any norm can be bounded in terms of the Euclidean norm,
so there exists constants v, 4 € (0,1] such that

Izl 2 Allzllz, [zl = Al

(see §A.1.4).

Again we assume f is strongly convex on the initial sublevel set S. The upper
bound V2f(x) < MI implies an upper bound on the function f(z + tAxyq) as a
function of ¢:

flxz+tAzgq) < f(x)+tVf(x)TAxsd+wt2
< f($)+tvf($)TA$sd+A42Aj;Sd”2t2
M
= f(:v)—tHVf(x)||§+Wﬁnw(:ﬂ)nz. (9.26)

The step size ¢ = v2/M (which minimizes the quadratic upper bound (9.26))
satisfies the exit condition for the backtracking line search:

tA < gl \V/ 2 < M2V A 2
flz+t xsd),f(w)—mﬂ f(@)]] 7f(95)+ﬁ f(x)" Azsq (9.27)
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since a < 1/2 and Vf(z)T Azsq = —||Vf(z)||2. The line search therefore returns a
step size t > min{1, 3y%/M}, and we have

fla®) = fle+tAz) < f(z) = amin{l, By*/M}|Vf(2)|?
< fz) - aF* min{1, By /MY V f(2)]13.

Subtracting p* from both sides and using (9.9), we obtain
f@®) =p* <e(f(z) —pY),

where
c=1-2mad* min{1, B+*/M} < 1.

Therefore we have
F@®) —p* < k(@) —pY),

i.e., linear convergence exactly as in the gradient method.

Discussion and examples

Choice of norm for steepest descent

The choice of norm used to define the steepest descent direction can have a dra-
matic effect on the convergence rate. For simplicity, we consider the case of steep-
est descent with quadratic P-norm. In §9.4.1, we showed that the steepest descent
method with quadratic P-norm is the same as the gradient method applied to the
problem after the change of coordinates # = P'/2z. We know that the gradient
method works well when the condition numbers of the sublevel sets (or the Hes-
sian near the optimal point) are moderate, and works poorly when the condition
numbers are large. It follows that when the sublevel sets, after the change of coor-
dinates & = P'/2z, are moderately conditioned, the steepest descent method will
work well.

This observation provides a prescription for choosing P: It should be chosen
so that the sublevel sets of f, transformed by P~1/2 are well conditioned. For
example if an approximation H of the Hessian at the optimal point H (z*) were
known, a very good choice of P would be P = H, since the Hessian of f at the
optimum is then

]Effl/2V2f(:c*)]flfl/2 ~1,

and so is likely to have a low condition number.

This same idea can be described without a change of coordinates. Saying that
a sublevel set has low condition number after the change of coordinates 7 = P/?x
is the same as saying that the ellipsoid

E={z|2"Px <1}

approximates the shape of the sublevel set. (In other words, it gives a good ap-
proximation after appropriate scaling and translation.)

This dependence of the convergence rate on the choice of P can be viewed from
two sides. The optimist’s viewpoint is that for any problem, there is always a
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Figure 9.11 Steepest descent method with a quadratic norm || - ||p,. The
ellipses are the boundaries of the norm balls {z | ||z — z®|p, <1} at z©
and ).

choice of P for which the steepest descent method works very well. The challenge,
of course, is to find such a P. The pessimist’s viewpoint is that for any problem,
there are a huge number of choices of P for which steepest descent works very
poorly. In summary, we can say that the steepest descent method works well in
cases where we can identify a matrix P for which the transformed problem has
moderate condition number.

Examples

In this section we illustrate some of these ideas using the nonquadratic problem in
R? with objective function (9.20). We apply the steepest descent method to the
problem, using the two quadratic norms defined by

2 0 8 0
ne[oi] meoe]

In both cases we use a backtracking line search with & = 0.1 and 8 = 0.7.

Figures 9.11 and 9.12 show the iterates for steepest descent with norm ||-|| p, and
norm || - ||p,. Figure 9.13 shows the error versus iteration number for both norms.
Figure 9.13 shows that the choice of norm strongly influences the convergence.
With the norm || - || p,, convergence is a bit more rapid than the gradient method,
whereas with the norm || - || p,, convergence is far slower.

This can be explained by examining the problems after the changes of coor-
dinates = = Pll/2x and T = Pgl/zx, respectively. Figures 9.14 and 9.15 show the
problems in the transformed coordinates. The change of variables associated with
P, yields sublevel sets with modest condition number, so convergence is fast. The
change of variables associated with P, yields sublevel sets that are more poorly
conditioned, which explains the slower convergence.
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Figure 9.12 Steepest descent method, with quadratic norm || - || p, .
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k
Figure 9.13 Error f(x(k)) — p* versus iteration k, for the steepest descent
method with the quadratic norm || - ||p, and the quadratic norm || - ||p,.

Convergence is rapid for the norm || - ||p, and very slow for || - || p,.



9.4 Steepest descent method 483

Figure 9.14 The iterates of steepest descent with norm || - ||p,, after the
change of coordinates. This change of coordinates reduces the condition
number of the sublevel sets, and so speeds up convergence.

Figure 9.15 The iterates of steepest descent with norm | - ||p,, after the
change of coordinates. This change of coordinates increases the condition
number of the sublevel sets, and so slows down convergence.
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9.5

9.5.1

(2 + Az, (@ + Azny)) /f

Figure 9.16 The function f (shown solid) and its second-order approximation
f at x (dashed). The Newton step Az, is what must be added to z to give
the minimizer of f.

Newton’s method

The Newton step
For x € dom f, the vector
Axy = —V2f(2) 'V f(2)
is called the Newton step (for f, at x). Positive definiteness of V2 f(z) implies that
V(@) Azgy = =V f(2)"V? f(2) 'V f(x) <0

unless V f(z) = 0, so the Newton step is a descent direction (unless x is optimal).
The Newton step can be interpreted and motivated in several ways.

Minimizer of second-order approximation

The second-order Taylor approximation (or model) J?of f at xis

f(m +v) = f(x) + Vf(x) v+ %’UTVZf(a?)U, (9.28)
which is a convex quadratic function of v, and is minimized when v = Ax,;. Thus,
the Newton step Az, is what should be added to the point x to minimize the
second-order approximation of f at x. This is illustrated in figure 9.16.

This interpretation gives us some insight into the Newton step. If the function
f is quadratic, then = 4+ Az is the exact minimizer of f. If the function f is
nearly quadratic, intuition suggests that x + Az should be a very good estimate
of the minimizer of f, i.e., z*. Since f is twice differentiable, the quadratic model
of f will be very accurate when x is near z*. It follows that when z is near x*,
the point x + Az should be a very good estimate of z*. We will see that this
intuition is correct.
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Figure 9.17 The dashed lines are level curves of a convex function. The
ellipsoid shown (with solid line) is {z 4+ v | v"V2f(z)v < 1}. The arrow
shows —V f(x), the gradient descent direction. The Newton step Azn¢ is
the steepest descent direction in the norm || - [[g24(,). The figure also shows
AZnsd, the normalized steepest descent direction for the same norm.

Steepest descent direction in Hessian norm

The Newton step is also the steepest descent direction at x, for the quadratic norm
defined by the Hessian V2f(z), i.e.,

ullv2 oy = (W V2 f(2)u) /2

This gives another insight into why the Newton step should be a good search
direction, and a very good search direction when x is near x*.

Recall from our discussion above that steepest descent, with quadratic norm
Il - |lp, converges very rapidly when the Hessian, after the associated change of
coordinates, has small condition number. In particular, near z*, a very good choice
is P = V2f(2*). When z is near x*, we have V2f(z) ~ V2 f(x*), which explains
why the Newton step is a very good choice of search direction. This is illustrated
in figure 9.17.

Solution of linearized optimality condition

If we linearize the optimality condition V f(z*) = 0 near x we obtain
V(@ + ) ~ Vi) + V2 () =0,

which is a linear equation in v, with solution v = Ax,;. So the Newton step Ax,y is
what must be added to x so that the linearized optimality condition holds. Again,
this suggests that when z is near z* (so the optimality conditions almost hold),
the update x + Axy should be a very good approximation of xz*.

When n =1, i.e., f: R — R, this interpretation is particularly simple. The
solution a* of the minimization problem is characterized by f'(z*) = 0, i.e., it is
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Figure 9.18 The solid curve is the derivative f’ of the function f shown in
figure 9.16. f’ is the linear approximation of f’ at . The Newton step Axns
is the difference between the root of f' and the point z.

the zero-crossing of the derivative f’, which is monotonically increasing since f is
convex. Given our current approximation x of the solution, we form a first-order
Taylor approximation of f’ at x. The zero-crossing of this affine approximation is
then x + Azy,s. This interpretation is illustrated in figure 9.18.

Affine invariance of the Newton step

An important feature of the Newton step is that it is independent of linear (or
affine) changes of coordinates. Suppose T' € R"™ " is nonsingular, and define
f(y) = f(Ty). Then we have

Vi) =T"Vf@),  Vfy) =T"V*f(2)T,
where = Ty. The Newton step for f at y is therefore

— (TTV2f(2)T) ™ (TTV f(x))
= —T7'V?f(2)"'Vf(z)
TflAa:nt,

Aynt

where Az, is the Newton step for f at . Hence the Newton steps of f and f are
related by the same linear transformation, and

x4+ Azxpy = T(y + Aynt)-

The Newton decrement
The quantity
_ 1/2
() = (Vf(@) "V f(2) 'V f ()"

is called the Newton decrement at x. We will see that the Newton decrement
plays an important role in the analysis of Newton’s method, and is also useful
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as a stopping criterion. We can relate the Newton decrement to the quantity
f(x) —inf, f(y), where f is the second-order approximation of f at x:

~ ~

£(@) = inf Fg) = J@) — Flo+ Aaw) = 7@

2

Thus, A\?/2 is an estimate of f(x) — p*, based on the quadratic approximation of f
at x.
We can also express the Newton decrement as

1/2

ANz) = (AzL V2 f(z)Azyy) (9.29)

This shows that A is the norm of the Newton step, in the quadratic norm defined
by the Hessian, i.e., the norm

lullv2p@) = (u" V2 f(2)u)
The Newton decrement comes up in backtracking line search as well, since we have

Vi) Azy, = —A(z)?. (9.30)

1/2

This is the constant used in a backtracking line search, and 